StrepTrap HP and StrepTactin Sepharose High Performance: These products are covered by US patent number 6,103,493 and equivalent patents and patent applications in other countries. The purchase of StrepTrap HP and StrepTactin Sepharose High Performance includes a license under such patents for non-profit and in-house research only. Please contact IBA (info@iba-go.com) for further information on licenses for commercial use of Strep-Tactin.

Histidine-tagged protein purification: Purification and preparation of fusion proteins and affinity peptides comprising at least two adjacent histidine residues may require a license under US patent numbers 5,284,933 and 5,310,663, and equivalent patents and patent applications in other countries (assignee: Hoffman La Roche, Inc).

UNICORN software: Any use of UNICORN software is subject to GE Healthcare Standard Software End User License Agreement for Life Sciences Software Products. A copy of the Standard Software End User License Agreement is available on request.

© 2012 General Electric Company—All rights reserved.

First published March 2012.

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.

GE Healthcare Life Sciences

For local office contact information, please visit www.gelifesciences.com/contact

www.gelifesciences.com/akta

GE Healthcare Bio-Sciences AB
Björkgatan 30
751 84 Uppsala
Sweden
ÄKTA Laboratory-scale Chromatography Systems
Instrument Management Handbook
Contents

Chapter 1
Introduction ... 5
Common acronyms and abbreviations .. 5
Chromatography terminology ... 6
Symbols .. 6

Chapter 2
Liquid chromatography systems and important considerations ... 7
Overview of chapters ... 8

Chapter 3
System volume effects on resolution and fraction collection ... 11
Tubing dimensions affect resolution .. 11
Peak broadening after the UV/Vis detector .. 12
System volume considerations .. 13
Effect of sample volume on resolution .. 14

Chapter 4
How to choose sample injection technique ... 15
Tubing loop ... 15
Superloop™ .. 17
Autosampler ... 20
Sample loading using a pump ... 21

Chapter 5
Liquid delivery and pumps ... 23
Conditioning the pump for accurate liquid delivery ... 23
Description of the pump and rinsing system ... 25
Air sensor to protect column ... 27

Chapter 6
Gradient formation and mixers .. 29
Choosing mixer size ... 29
Conductivity disturbances ... 29
Gradient delay volume .. 30
Appendix 3
Determination of delay volumes..61
Theoretical determination (preferred method)...61
Experimental methods...62

Appendix 4
Troubleshooting column issues...65

Appendix 5
Troubleshooting fraction collection...67

Appendix 6
Introducing laboratory-scale ÄKTA systems..69

Appendix 7
Principles and standard conditions for different purification techniques..73
Affinity chromatography (AC)..73
Ion exchange chromatography (IEX)...74
Hydrophobic interaction chromatography (HIC)..75
Gel filtration (GF) or Size exclusion chromatography (SEC)..77
Reversed phase chromatography (RPC)...78

Appendix 8
Columns for ÄKTA systems...79

Related literature..84

Ordering information..85
Chapter 1
Introduction

This handbook, “ÄKTA Laboratory-scale Chromatography Systems,” is focused on liquid chromatography systems used for protein purification at research laboratory scale. Beginners can use the handbook to obtain an overview of how purification systems work and to learn about important considerations for achieving successful results. Experienced system users will also find valuable and detailed information on different hardware modules.

A chromatography system should be used when reproducible results are important and when manual purification becomes too time-consuming and inefficient. Systems provide more control than manual purification because of the ability to automatically control the flow rate and monitor the progress of the purification as well as to make controlled gradients and automatically collect fractions. Systems can perform automatic, simple, step-gradient elution as well as high-resolution separations using accurately controlled linear-gradient elution.

This handbook addresses different aspects of ÄKTA chromatography systems, such as the effect of system peak broadening on resolution, choosing sample injection technique, and selecting an appropriate mixer. It also gives straightforward advice on how to avoid problems such as air bubbles in the pump, how to troubleshoot problems such as high back pressure, and how to perform cleaning of system components.

The appendices include a general introduction to the different ÄKTA laboratory-scale systems and columns as well as information on how to determine exact delay volumes for a specific system.

Common acronyms and abbreviations

- A_{280}: Absorbance of light at specified wavelength, in this example, 280 nanometers
- AC: Affinity chromatography
- CF: Chromatofocusing
- CIP: Cleaning-in-place
- CV: Column volume
- DS: Desalting (group separation by gel filtration; buffer exchange)
- FPLC™: Fast protein liquid chromatography
- GF: Gel filtration (sometimes referred to as SEC; size exclusion chromatography)
- HIC: Hydrophobic interaction chromatography
- i.d.: Inner diameter
- IMAC: Immobilized metal affinity chromatography
- IEX: Ion exchange chromatography (also seen as IEC in the literature)
- mAU: Milli absorbance unit
- MPa: MegaPascal; unit of pressure
- mPas: Unit for viscosity (1 mPas = 1 cP, i.e., 1 centiPoise)
- o.d.: Outer diameter
- PM: Preventive maintenance
- RPC: Reversed phase chromatography
- R_s: Resolution, the degree of separation between peaks
- s: Second(s)
- SEC: Size exclusion chromatography (same as gel filtration)
- UV/Vis: Ultraviolet/visible light
Chromatography terminology

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back pressure</td>
<td>The pressure caused by column or system components in the system flow path.</td>
</tr>
<tr>
<td>Chromatogram</td>
<td>A graphical presentation of detector responses.</td>
</tr>
<tr>
<td>Chromatography</td>
<td>From Greek chroma, color, and graphein, to write.</td>
</tr>
<tr>
<td>Chromatography medium/media</td>
<td>The stationary phase, also called resin. The chromatography medium is often composed of a porous matrix (base matrix). The matrix is usually functionalized by coupling it with ligands that can bind molecules to be separated.</td>
</tr>
<tr>
<td>CIP (cleaning-in-place)</td>
<td>Common term for cleaning chromatography columns and/or systems with the purpose of removing unwanted/nonspecifically bound material.</td>
</tr>
<tr>
<td>Column</td>
<td>Usually column hardware packed with chromatography medium.</td>
</tr>
<tr>
<td>Column hardware</td>
<td>The column tube and adapters. All pieces of the column except the chromatography medium/the packed bed.</td>
</tr>
<tr>
<td>Column hardware pressure</td>
<td>The pressure inside the column during chromatography. Column hardware pressure that is too high can break the column.</td>
</tr>
<tr>
<td>Degassing</td>
<td>Removal of dissolved air from buffers/solutions.</td>
</tr>
<tr>
<td>Delay volume</td>
<td>The volume corresponding to a part of the system. Fractionation delay volume is the volume of tubing and system components between a monitor and the fraction collector. Gradient delay volume (also called dwell volume) relates to the volume between the point where two solutions are mixed and the column.</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Measured as number of theoretical plates. High efficiency means that sharp peaks will be obtained.</td>
</tr>
<tr>
<td>Flow rate</td>
<td>Flow through a column and/or chromatography system. Expressed in ml/min.</td>
</tr>
<tr>
<td>Flow velocity</td>
<td>Flow rate divided by the cross-sectional area of a column. Expressed in cm/h.</td>
</tr>
<tr>
<td>Inline</td>
<td>A component that is part of the flow path.</td>
</tr>
<tr>
<td>Medium/media</td>
<td>Same as chromatography medium/media.</td>
</tr>
<tr>
<td>Peak broadening</td>
<td>The widening of a zone of solute (e.g., a protein) when passing through a column or a chromatography system. Gives rise to dilution of the solute and reduces resolution. Also termed band broadening or zone broadening.</td>
</tr>
<tr>
<td>Pressure over the packed bed</td>
<td>The pressure drop across the packed bed upon passage of solution through the column. Caused by flow resistance in the packed bed.</td>
</tr>
<tr>
<td>Resolution</td>
<td>Measurement of the ability of a packed column to separate two solutes (peaks).</td>
</tr>
<tr>
<td>Selectivity</td>
<td>Measure of the relative retention of two solutes in a column. Related to the distance between two peaks.</td>
</tr>
<tr>
<td>System volume</td>
<td>The total volume of all tubing and system components outside the packed chromatography bed. (Sometimes referred to as system dead volume.)</td>
</tr>
</tbody>
</table>

Symbols

👉 This symbol indicates general advice to improve procedures or recommend action under specific situations.

⚠️ This symbol denotes mandatory advice and gives a warning when special care should be taken.
Chapter 2
Liquid chromatography systems and important considerations

A number of benefits can be derived from using an automated protein purification system. Such a system:

• Ensures more controlled conditions and reproducible results
• Purifies proteins automatically without the need for user interactions during the run
• Allows sensitive samples to be purified more efficiently
• Allows use of high-resolution media
• Provides inline detection that helps in making decisions, for example, when the column has become equilibrated, when to collect fractions, etc.
• Allows automated collection of purified protein in small or large volumes
• Uses software that makes it easy to create methods, monitor runs, and evaluate results

Protein separation takes place in a column. Buffers and other liquids are delivered via the system pump, and sample can be applied in different ways (e.g., using a syringe to fill a sample loop or by using a sample pump). Detectors (e.g., UV/Vis absorbance, conductivity, pH) are placed after the column to monitor the separation process. The purified proteins are collected in the fraction collector. Figure 2.1 shows a typical system’s flow path.

![Typical flow path for a chromatography system.](image)
Overview of chapters
This section provides a short description of Chapters 3 to 10.

Peak broadening and resolution
To obtain a pure product it is important to optimize the system’s flow path, assuring that it matches the column performance. A poor match where system volume is too large may result in diluted peaks with decreased resolution and less pure protein (see Fig 2.2). Tubing that is too narrow may result in back pressure that is too high for the column hardware. Learn more about how to avoid these problems in Chapter 3, “System volume effects on resolution and fraction collection.”

Fig 2.2. Peak broadening in tubing. Liquid flows faster in the middle of a tube as compared with closer to the walls. The farther a protein peak passes through a tube, the broader it becomes, as depicted in the chromatograms shown on the right.

Sample loading
The sample is typically applied to the column using either a prefilled sample loop or a pump. Learn more about the different techniques and when to use them in Chapter 4, “How to choose sample injection technique.”

Liquid delivery
The performance of the pump is important for ensuring reliable and reproducible results. One common cause of unsuccessful chromatography is air bubbles in the pump. This can cause pulsations in the flow delivery, resulting in an inaccurate flow rate. This effect can be observed as disturbances in the pressure curve. Learn how to condition the pump in a proper manner, as described in Chapter 5, “Liquid delivery and pumps.” See also Figure 2.3.

Fig 2.3. Remove air bubbles by using a syringe to draw liquid from the purge valves. The figure shows a pump head from AKTA avant 25.
Buffer mixing

The mixer has two important functions in the system. The first is to provide a homogeneous mix during gradient formation where two or more liquids are used to create the gradient. The second is to even out pulsation effects from the pump. The mixer that is delivered with the system will cover most of the applications within the flow rate range of the system, but in some cases it may be necessary to switch to a mixer of a different volume to obtain optimal results. See Chapter 6, “Gradient formation and mixers,” for more information on this topic. See also Figure 2.4.

![Figure 2.4](image)

Fig 2.4. The actual gradient will differ from the programmed gradient column in a system with too large a mixer.

Pressure

High-performance media used to achieve high resolution require a high-performance pump that can operate under high pressure. Generally, such pumps can generate a higher pressure than the column hardware and media can withstand. It is therefore important to monitor the system pressure so that it does not exceed the limits of the column. Read more about this in Chapter 7, “System pressure.”

Detectors

Different detectors are used to follow the progress of the purification. For protein detection, multiple wavelength absorbance detectors are often used. The majority of proteins can be detected by measuring UV absorbance at 280 nm, but other wavelengths can also be used to gather additional information (see example in Fig 2.5). The conductivity monitor is used to follow column equilibration and salt gradient formation. For some applications it is important to also monitor pH. For more information see Chapter 8, “Sample monitoring and detectors.”

![Figure 2.5](image)

Fig 2.5. Specific detection of green fluorescent protein (GFP) at 490 nm.
Fraction collection

Preparative purification requires that the purified protein can be collected and fractionated. The eluted materials are collected in fractions using a fraction collector or an outlet valve. See Chapter 9, “Fraction collection,” for information about different ways of controlling protein peak fractionation and what the important parameters are for successful protein collection. See also Figure 2.6.

![Absorbance vs. Volume](image)

Fig 2.6. During this run, “peak fractionation” was used to collect the eluted proteins.

System cleaning

To ensure the long-term performance of the system, regular maintenance is important. When not using the system for some time, it is important to store it properly. Chapter 10, “Cleaning and storage of system components,” describes how to properly clean the different components of the system. To minimize the risk of salt precipitation, which may damage the seals, avoid long-term exposure of system components to high salt concentrations.
This chapter describes how the internal volume of the system affects liquid transportation and protein purification results.

The main applications for protein chromatography are either to analyze a protein sample or to prepare pure protein, sometimes referred to as preparative purification. For a successful result in both of these applications, high resolution is often important. High resolution is obtained by the use of chromatography media with combined high selectivity and efficiency. High selectivity ensures that the protein is bound to the media. High efficiency means that the protein peaks obtained are narrow and that good separation can be achieved between them.

Analytical chromatography systems generally handle small sample volumes. To minimize sample dilution and loss, components in an analytical system should have small internal volumes and allow usage of high-resolution media.

In preparative chromatography, it is important to use a chromatography medium and column that generate an appropriate resolution. It is important to keep the distance between the column and the fraction collector short to avoid dilution of the separated proteins. This is also important when purifying small amounts of protein to avoid protein losses due to dilution effects.

Tubing dimensions affect resolution

All components in the system (flow cells, valves, etc.) must in some way be connected to each other with tubing. Excess tubing will give unnecessary peak broadening, that is, the separated proteins will be diluted, and resolution (purity obtained) will be decreased. Peak broadening is due to the flow rate in the tubing being higher toward the middle compared with closer to the walls of the tubing. The result is that a protein peak passing through the system will become broader as it moves through the tubing, as illustrated in Figure 3.1.

Fig 3.1. Schematic description of protein peak broadening in tubing. Liquid flows faster in the middle of a tube as compared with closer to the walls. The farther a protein peak passes through a tube, the broader it becomes, as depicted in the chromatograms shown on the right.
To achieve the best purification result, it is important to find the optimal tubing parameters for the purification setup. Figure 3.2 shows an example in which a sample was analyzed using tubing of different inner diameters (i.d.). Here, the resolution is most affected when going from 0.75 mm to 0.25 mm i.d. tubing. Decreasing the tubing diameter further will not have a large effect on the resolution. At the same time, the back pressure in the system will increase as tubing diameter is decreased. This must also be taken into consideration.

Fig 3.2. The resolution increases as the tubing diameter decreases. Column: Superdex™ 200 5/150 GL (CV, 3 ml). Flow rate: 0.3 ml/min.

Peak broadening after the UV/Vis detector

In a given chromatogram, the UV/Vis absorbance curve shows the purification result as it was while the proteins passed the absorbance detector. What happens between the UV/Vis absorbance detector and the fraction collector is not visible in the chromatogram. This "hidden" effect can sometimes be dramatic, especially for high-resolution columns. Figure 3.3 shows the effect of using larger i.d. and/or longer tubing and thereby increasing the system volume. The consequence of increasing the system volume is that the high resolution obtained in the column may be spoiled as the protein peaks progress to the fraction collector.

Use tubing that is as short as possible between the absorbance detector and the fraction collector.

Fig 3.3. Consequence of the "hidden" system contribution if using tubing that is too long or that has a large i.d. between the UV/Vis absorbance detector and the fraction collector.
In a system designed for high-performance separations, the recommendation is to use narrow and short tubing to keep the peak broadening low. The drawback is that narrow tubing will increase the back pressure. Read more about this in Chapter 7, “System pressure.” An optimal combination of tubing length and i.d. is required to achieve the resolution needed and at the same time keep the back pressure within the pressure limit of the column used.

System volume considerations

For a given chromatography system, the relative system contribution to peak broadening will depend on both the bead size of the chromatography medium and column dimensions. Small beads and narrow columns result in narrow peaks (a high-performance column), whereas large beads and wide columns result in wide peaks.

The system volume can contribute significantly to the peak broadening of a narrow peak, but will contribute almost nothing to a wide peak. As illustrated in Figure 3.4, the system effect on resolution will be much larger for smaller peaks.

Peak volume

![Diagram showing system contribution to peak broadening](image)

Fig 3.4. Smaller peaks are more affected than larger peaks (same system in both cases).

It is important to know that the effect of the system contribution on the peak width is nonlinear, as can be seen in Figure 3.5. This graph shows the contribution from a typical laboratory-scale system with 0.5 mm i.d. tubing. In this example, the system contribution has little effect on peaks that are larger (broader) than 3 to 4 ml. On the other hand, if the peaks are less than 1 ml, the system contribution becomes significant.
Fig 3.5. A) The relative system contribution depends on the peak width. B) Peak width is in this example determined at the half height of the peak.

Besides tubing diameter, peak broadening is also affected by tubing length and the dimensions of valves and flow cells. It is therefore important to determine if the column to be used is suitable for the system. Do not run smaller columns than recommended for the system (see the selection guide in "Related literature"). If a smaller column is needed, consider minimizing the system volume by modifying the system, for example, by changing tubing to a smaller i.d. and/or excluding components from the flow path to minimize the system volume.

If making hardware changes that will affect the system volume, remember to update relevant delay volumes in the software. (For more information refer to Chapter 9 and Appendix 3.)

Effect of sample volume on resolution

Sample volume does not affect resolution in chromatography techniques involving adsorption of the target protein onto the column. Examples of binding techniques are affinity chromatography (AC), ion exchange chromatography (IEX), and hydrophobic interaction chromatography (HIC). Gel filtration (GF), however, is a nonbinding chromatography technique, and a sample zone is therefore broadened during passage through the GF column. As a result, the sample gets diluted, and the resolution will decrease with increasing sample volume.

Figure 3.6 shows a GF example in which different volumes of a sample were applied to a Superdex 200 10/300 GL column. In the first case, 250 µl of sample was applied, which correspond to 1% of the column volume. In the second case, 1000 µl of sample was applied, which corresponds to 4% of the column volume. As can be seen, the resolution was higher when a smaller sample volume was used.

Fig 3.6. Effect of sample volume on resolution in GF. Sample volume as % of media volume. Column: Superdex 200 10/300 GL.

The loaded sample volume should be kept small when using a nonbinding chromatography technique. To achieve the highest resolution in GF, a sample volume of less than 2% of the total column volume is recommended.
Chapter 4
How to choose sample injection technique

There are three common ways of applying the sample to the column:

1. From a prefilled sample loop
2. Direct injection via the sample pump
3. Direct injection via the system pump

Table 4.1. Sample application techniques

<table>
<thead>
<tr>
<th>Technique</th>
<th>Sample volume</th>
<th>Important</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubing loop</td>
<td>Small</td>
<td>Filling and emptying the loop in a correct manner</td>
<td>Handles small volumes</td>
</tr>
<tr>
<td></td>
<td>10 µl–10 ml</td>
<td></td>
<td>High reproducibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimizes sample loss if partially filled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Can be used at high pressure</td>
</tr>
<tr>
<td>Superloop</td>
<td>Intermediate</td>
<td>Filling and cleaning the loop</td>
<td>Minimizes sample loss</td>
</tr>
<tr>
<td></td>
<td>100 µl–150 ml</td>
<td></td>
<td>Allows repeated injections without manual interactions in-between</td>
</tr>
<tr>
<td>Sample or system pump</td>
<td>Large</td>
<td>Removing air bubbles from pump</td>
<td>Is convenient for large volumes</td>
</tr>
<tr>
<td></td>
<td>5 ml*–several liters</td>
<td>Priming the tubing with buffer/sample before start</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cleaning the pump afterward</td>
<td></td>
</tr>
</tbody>
</table>

* Sample volume in the lower range requires tubing with small i.d. to minimize sample loss.

Tubing loop

Tubing loops are used for smaller sample volumes. The loop must be filled and emptied in a correct manner. Reproducibility when using a loop will be high because the sample application is independent of any variation in flow rate. Sample loops of different volumes are available, ranging from a few microliters up to 10 ml.

When filling the loop it is important to consider the fluid dynamics, as explained in Figures 4.1 and 4.2. The flow rate of the sample entering the loop will be higher toward the middle compared with close to the walls of the tubing; this creates a parabolic flow profile in the loop (Fig 4.1). Thus, in order to fill the loop completely, a larger volume needs to be loaded, which is explained in the next section and illustrated in Figure 4.2.

Fluid dynamics

Fig 4.1. Fluid dynamics through tubing.
Filling a tubing loop

There are two ways to fill a tubing loop: partial filling and overfilling; see Figure 4.2. With partial filling, there is no sample loss but reproducibility is lower if the same procedure is repeated. With overfilling, a better volume accuracy is obtained. For a complete fill, load three to five times the loop volume to obtain high accuracy. The needed volume depends on the loop dimensions (length and i.d.). Generally, the larger the loop volume the less overfill is needed.

For a partially filled sample loop, do not fill more than half of the total loop volume. If more is applied, a portion of the sample may pass through and out of the loop, as shown in Figure 4.2.

![Diagram of filling a tubing loop](image)

Fig 4.2. Filling a sample loop (here i.d. was 0.50 mm).

Emptying a tubing loop

To avoid dilution when emptying a tubing loop, empty it in the opposite direction from which it was filled.

The volume to achieve complete recovery will vary with the flow rate, loop dimensions, and the properties of the sample, but usually three to five times the loop volume is sufficient.

Figure 4.3 shows an example of the recovery achieved at different volumes when emptying a 100 µl loop at 0.5 ml/min. To empty the loop completely, in this example a buffer volume corresponding to three times the loop volume was needed.

![Diagram of emptying a tubing loop](image)

Fig 4.3. The elution profile and recovery when emptying the contents of a completely filled sample loop. In this setup a tubing loop with i.d. 0.50 mm was used.
To achieve high sample recovery, use a large volume to empty the loop. For nonbinding techniques (e.g., desalting and GF), there are sample volume limitations due to the size of the column used.

Figure 4.4 shows an example of how resolution can be improved by decreasing the volumes used to empty the loop during sample injection. This is a common way of working when analytical studies are performed.

![Figure 4.4. The chromatogram shows how the separation in GF is affected by the different volumes used to empty the loop during sample injection.](image)

Before starting, decide whether the most important aim is high recovery or high resolution.

Superloop

Superloops are available in three different sizes, 10, 50, and 150 ml, and can be used for sample volumes in the range of 100 µl to 150 ml. They can be used to inject the complete sample volume onto the column or to make repeated injections of a sample without manual interactions in between. Figure 4.5 depicts a 10 ml Superloop.

![Figure 4.5. Schematic drawing of a 10 ml Superloop.](image)
How to fill and empty a Superloop

A Superloop is connected to the injection valve and is initially filled with buffer. Sample is loaded from the bottom, either manually using a syringe or by using a sample pump (Fig 4.6A). The sample is injected onto the column by pushing buffer into the top of the Superloop so that the seal moves downward, pushing the sample out of the Superloop. The seal hinders mixing of sample and buffer (Fig 4.6B). When the moveable seal reaches the bottom position, the buffer will automatically bypass the seal to the column, following the sample (Fig 4.6C).

![A) Sample load B) Sample inject C) Sample flush](image)

Fig 4.6. Filling and emptying a Superloop. In these images, sample is colored yellow and buffer blue.

Considerations when using a Superloop

The flow rate delivered from a Superloop is determined by the system flow rate. In situations where it is more important to inject the entire sample, run the pump for slightly more than the estimated sample volume to make sure that the Superloop and tubing are completely emptied (see Fig 4.6C).

- **⚠️** Superloops have a limited pressure range: 4 MPa for the 10 and 50 ml loops and 2 MPa for the 150 ml loop. Always make sure that the system pressure alarm limit does not exceed these values when the Superloop is connected inline.

- **⚠️** If using a column with a higher pressure tolerance than that of the Superloop being used, remember to lower the pressure limit during sample application. Also bypass the Superloop before increasing the flow rate to normal.

- **👉** The moveable seal in the 10 ml and 50 ml Superloops has an O-ring made of fluorocarbon rubber that has limited chemical resistance. It can be used in aqueous buffer solutions and alcohols while other solvents should be used with caution.

- **👉** Solvent-resistant O-rings for Superloops 10 ml and 50 ml are available as accessories.
How to prepare a Superloop

Before connecting a Superloop to the system, remove the upper end piece, as shown in Figure 4.7.

Fig 4.7. Upper end piece removed from a Superloop.

Position the moveable seal in the bottom of the Superloop and fill it by pouring buffer into the glass cylinder as shown in Figure 4.8. Reassemble the top piece and make sure that no air bubbles are trapped inside, as shown in Figure 4.9.

Fig 4.8. Moveable seal should be in bottom position (left). Buffer is poured into the cylinder (right).

Fig 4.9. How to mount the top piece (left) to reassemble the Superloop (right).

To apply sample at a preferred temperature, allow water of the desired temperature to circulate in the outer shield of the Superloop.
How to connect a Superloop to the injection valve

A Superloop is connected to the same ports as a tubing loop. To find out which port should be connected to the bottom of the Superloop, connect a syringe to the injection valve, and turn the valve to position “load.” Inject liquid, and check where it comes out, as shown in Figure 4.10. Connect the tubing from the bottom of the Superloop to this port. Be careful not to introduce air bubbles in the sample compartment.

![Image of Superloop connection](image)

Fig 4.10. Check where to connect the bottom of the Superloop by injecting buffer into the injection valve.

The top of the Superloop should be connected to the port where liquid from the pump is directed during injection mode. If unsure, start a flow rate and change to position “inject.” Where the liquid comes out is the port to which the Superloop top should be attached.

How to clean a Superloop

A Superloop can be cleaned while connected to the system. This is achieved by pumping a cleaning or sanitizing agent through the Superloop. The standard recommendation is to pump 0.5 M NaOH for 30 min. Make sure to rinse the loop properly after using NaOH; for example, wash with water followed by buffer until a neutral pH is achieved.

To avoid carryover when changing sample, it is recommended to disassemble the Superloop and clean all parts separately.

![Hand with caution symbol](image)

Wear gloves and safety glasses when using hazardous/corrosive chemicals.

Autosampler

By using an autosampler, several small sample volumes can be injected automatically, which is convenient in, for example, protein analysis or micro purification work. The autosampler makes sure that one sample at a time is used to fill the sample loop. Table 4.2 lists two autosamplers and their capabilities. These autosamplers can be used with ÄKTAmicro™, ÄKTAexplorer™, or ÄKTApurifier™ systems, but ÄKTAmicro can only use A-905.

Table 4.2. Autosampler options

<table>
<thead>
<tr>
<th>Autosampler</th>
<th>Capacity</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-900</td>
<td>96, 1.5 ml vials or 160, 0.5 ml vials</td>
<td>Yes</td>
</tr>
<tr>
<td>A-905</td>
<td>a 96-well plate, a 384-well plate, or 48, 1.5 ml vials</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Sample loading using a pump

A sample or system pump can be used to apply sample directly onto the column. Figure 4.11 shows an example of a flow path including a sample pump. When using a pump, a desired, predetermined volume can be chosen, or an air sensor can be used to allow loading of the entire sample (undefined volume) onto the column. When the sample container is emptied, air will trigger the air sensor and the sample valve will turn to another port. This also prevents air being injected into the column. For serial purification runs, the pump can be used together with an inlet valve to serially load different samples.

Before applying sample onto the column, the following preparation is important:

1. To ensure correct volume delivery, air bubbles must be removed from the pump(s) as described in Chapter 5.
2. The flow path from the sample bottle to the injection valve must be filled with sample (primed) before starting the sample application.

Preparing sample inlet

When the pump is started, the volume from the sample container to the injection valve will be directed to the column. If the flow path has not been prefilled (i.e., primed) with sample, the actual sample volume applied to the column will be smaller than anticipated.

![Diagram](image)

Fig 4.11. From the start, the flow path (including the sample inlet) is filled with buffer (A). Primed tubing, that is, the tubing between inlet and injection valve, is filled with sample (B), ensuring that the correct volume is injected onto the column during sample application. In the figure, sample is colored green and buffer blue.

Sample inlet preparation volume

The volume needed to fill the sample inlet depends on the tubing and components included in the flow path. The easiest way to determine this is to calculate the volume theoretically. To do this, all tubing and components from the sample vessel to the injection valve should be included. See Appendix 3 for details.

It is also possible to determine the volume experimentally. Disconnect the column from the flow path. Fill the system with buffer and use buffer containing 1% acetone as sample. Use the pump to apply the acetone solution. Note the volume it takes until the UV/Vis absorbance detector (using A_{260}) detects acetone. NaCl can be used instead of acetone. In this case, measure the volume it takes for the conductivity monitor to detect the salt. Note: the volume obtained from experimental determination is slightly higher than when using the calculation method, because the path from the injection valve to the detector is added.
Applying a fixed sample volume

To apply a fixed sample volume using a pump, first determine the volume needed to prime the flow path with sample as described above.

Place the sample inlet in buffer and remove air bubbles from all pumps that will be used by purging as described in Chapter 5. Immerse the sample inlet in the sample container and start the priming. After priming, the system is ready for sample application.

Applying all of the sample using an air sensor

To apply all the sample, use a pump and an air sensor. Prime the sample inlet to be used with buffer, and remove air bubbles from the pumps as described in Chapter 5. Then immerse the sample inlet in the sample container and use the pump to apply the sample (Fig 4.12A). Apply the sample to the column until the air sensor detects air bubbles (Fig 4.12B). After air has been detected, the sample valve switches to a buffer inlet allowing the remaining sample from the sample valve to the injection valve to be applied onto the column (Fig 4.12C).

Fig 4.12. Sample application example where a sample pump and air sensor are used to apply sample. In the figure, sample is colored green and buffer blue. Refer to text in images for descriptions of A, B, and C panels.

In some systems, preprogrammed methods are available that can be used to prime the sample pump and air sensor with sample.
Chapter 5
Liquid delivery and pumps

This chapter describes the high-performance pumps used in laboratory-scale ÄKTA systems. Accurate flow rate, reproducible liquid delivery, and low pulsation are essential for an optimal purification result. Because the column and media used in laboratory-scale chromatography often generate varying back pressure, the pump must also function under both high and low pressure.

Always make sure to remove all air bubbles in the pump before starting a run.

For optimal separation, make sure that the pump delivers the correct flow rate.

Conditioning the pump for accurate liquid delivery

Some systems have two pumps to be able to create accurate gradients. Other systems use one pump and a switch valve to form gradients. Each pump normally contains two pump heads that work in opposite mode to create a homogeneous flow rate.

How to detect air bubbles in the pump

Air bubbles present in the pump cannot be detected by visual inspection of the pump. Instead, the pressure curve can be analyzed.

When the pump runs against a back pressure above 0.2 MPa, air bubbles present will be seen by disturbances in the pressure curve (Fig 5.1). To generate a back pressure above 0.2 MPa, a reference capillary can be used (see Table A2.1 in Appendix 2).

![Fig 5.1. System pressure curve appearance when air bubbles are present in the pump.](image)

The accuracy of the volume delivered is affected by even very small air bubbles (a few microliters) trapped in the pump.
How to remove air bubbles

Air bubbles are removed from the pump by using a syringe to draw liquid via the purge valve of the pump as described below. This procedure is referred to as “purging.”

To avoid air entering the pump, make sure that all inlets are prefilled with liquid. Also, check that all tubing connections at the pump and inlets are tight.

To purge the pump, connect a syringe to the purge valve (Fig 5.2). Open the purge valve and draw liquid slowly into the syringe. It is very important to draw the liquid slowly, no more than 1 ml/s, otherwise an under-pressure will be generated and more air bubbles will be released in the pump.

The purging will be more efficient if the pump is run at a flow rate around 10% of the system’s maximum flow rate. Such a flow rate will help to mechanically release any air bubbles adhering to the walls inside the pump head. Normally, pumps designed for higher flow rates are more easily purged because of the larger volume of the pump head.

For best results, purge all pump heads of the pump.

![Fig 5.2. Remove air bubbles by using a syringe to draw liquid from the purge valves. A) Two pump heads from ÄKTA avant 25 and B) ÄKTAprime™ plus system pump.](image)

After purging, check that all air bubbles have been removed by analyzing the pressure curve (Fig 5.1). Start a flow and run the pump at a pressure above 0.2 MPa. If the pressure curve indicates that there are still air bubbles present, repeat the purging process and check the pressure curve again.

If air bubbles remain after purging using buffer, use 100% methanol instead. Make sure the pump contains water, then use a syringe to draw 100% methanol into the pump and let it run at 10% of the system’s maximum flow rate until the pressure curve disturbances (Fig 5.1) disappear. To remove the methanol, stop the pump and switch to water. Make sure that no air bubbles are introduced. Run the pump at a flow rate of 1 ml/min for 5 min to wash away the methanol. Then purge the pump again using a syringe.

If the pump gives an inaccurate flow rate even after removal of air bubbles, contact your GE Healthcare Life Sciences Service representative.

Air bubble origin

Air bubbles may be released from the liquid when the pressure drops. When the pump is running, the pressure inside the pump will be higher than the atmospheric pressure during liquid delivery. When the pump is in the suction phase, the pressure will be below atmospheric pressure, and air bubbles may be released. To avoid this situation, place the bottles above...
NEVER place the liquids below the pump unless the user manual states that it is possible (some systems have a pump design that allows such placement).

Because solutions are always in contact with air, it is recommended to degas them prior to use.

Pay special attention to liquids stored at low temperature that will be used at room temperature. More air is dissolved at lower temperature, therefore allow time for the liquids to adjust to room temperature before use.

Air bubbles might also be generated when switching between aqueous and organic solvents in the pump. Due to different capacities to dissolve air, bubbles may be released when two liquids are mixed. To avoid this situation, when switching between different liquids, direct the flow path to the waste position of the injection valve and pump at a fairly high flow rate (> 50% of the system's maximum flow rate) for some time.

Description of the pump and rinsing system

Functionality of the pump

Due to the design of the ÄKTA pumps, they are virtually pulse-free and do not introduce sheer forces that may disrupt or break down proteins mechanically. The pumps can also operate at both high and low pressure, which makes them convenient for various conditions encountered in protein purification.

To generate the set flow rate during operation, the pumps use an algorithm to control how the pistons move. As long as there are no air bubbles in the pump, the flow rate accuracy will be high, with an error rate typically ≤ 2%.

Most ÄKTA pumps consist of two pump heads (Fig 5.3). The individual heads are identical but operate in opposite phase to each other, using individual stepper motors. The two pistons and pump heads work alternately to provide continuous low-pulsation liquid delivery.

![Fig 5.3. Schematic view of the P-901, P-903, P-905, P9, P9-S, and P9H pumps.](image)

Figure 5.4 shows the pump head design. As the piston moves out of the chamber during the suction phase, the inlet check valve will open and the outlet check valve will close, allowing the chamber to fill up with liquid. During the delivery phase, the outlet check valve will open while the inlet check valve will close. During this phase, the piston will move into the chamber, pushing the liquid out of the pump.
Piston seal rinsing system

The piston seal rinsing system has two functions:

1. It protects the piston seals and pump heads by preventing a buildup of deposits consisting of components from solutions used, for example, salt crystals.
2. It prolongs the lifetime of the seal by preventing it from drying.

The inlet and outlet tubing of the rinsing system are most often placed in the same container. The rinsing system should always be filled with 20% ethanol, which then circulates on the back side of the pump head as shown in Figures 5.5 and 10.2. In this process, deposits will be flushed out, and the ethanol prevents microbial growth.

Check the 20% ethanol solution frequently. Change it once a week or if the solution appears opaque or the ethanol level in the container has decreased.

To be reminded about the change, place the rinsing solution where it is visible, for example, on top of the system or mounted on the instrument wet side.
Air sensor to protect column

An air sensor used at the buffer inlet prevents introduction of air into the column and system. Once the air sensor alarm is triggered, the system will stop.

To avoid air bubbles becoming trapped within the air sensor and subsequently triggering the alarm, always mount the air sensor’s inlet and outlet vertically and in an upflow direction (i.e., opposite to gravity flow).

Different levels of sensitivity of air detection can be set; see Table 5.1 for general advice.

Table 5.1. Setting the level of sensitivity of air detection

<table>
<thead>
<tr>
<th>Level</th>
<th>Detects</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Large volume of air</td>
<td>Provides protection against running out of buffer/solution</td>
</tr>
<tr>
<td>Medium/Normal</td>
<td>Air bubbles of medium size (e.g., 30 to 100 µl)</td>
<td>Aborts sample application when using the pump to apply complete sample</td>
</tr>
<tr>
<td>High<sup>1</sup></td>
<td>Small air bubbles (e.g., tenths of microliters)</td>
<td>When the air sensor is placed between the injection valve and column</td>
</tr>
</tbody>
</table>

¹ Use high sensitivity with care because it may catch stray air bubbles that are not detrimental to the process and may unnecessarily activate the alarm, pause the run, and stop the flow.
Chapter 6
Gradient formation and mixers

Gradients are used during elution of absorbed proteins from the column. High accuracy in flow rate delivery is key in generating an optimal gradient. How to ensure an accurate flow rate is described in Chapter 5. For proper gradient formation, it is important to minimize the effect of pump pulsation and to make sure that the liquids used to form the gradient are mixed to a homogeneous solution before entering the column. A mixer will accomplish these functions. Different approaches may be taken, and both dynamic and static mixers are used in chromatography systems. Some systems have two pumps to be able to create accurate gradients. Other systems use one pump and a switch valve to form gradients.

Choosing mixer size
The delivered volume and type of solutions will determine the mixer size needed (see Table 6.1). Usually the mixer supplied with the system will cover a broad range, but there are occasions when changing to a different mixer size should be considered. Check the system user manual to find out which mixer to use.

Table 6.1. Recommendations for mixer size

<table>
<thead>
<tr>
<th>When running</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small columns at a flow rate in the lower range and with small gradient volume</td>
<td>Changing to a smaller mixer will reduce the effects of the system volume.</td>
</tr>
<tr>
<td>High flow rates and/or using solutions that are hard to mix, e.g., high salt concentration or mixing aqueous with organic solvents</td>
<td>Change to a larger mixer for proper mixing.</td>
</tr>
</tbody>
</table>

A larger mixer may be needed when creating gradients with aqueous and organic solvents. Improper mixing of aqueous and organic solvent can be seen as disturbances in the absorbance baseline. Change to a larger mixer and perform a test run without a column, to make sure that the absorbance baseline is stable.

Conductivity disturbances
Perturbations to the shape of the conductivity curve may indicate improper mixing. If the internal volume of the mixer is too large, the shape and slope of the gradient will be affected, which can be observed on the conductivity curve as disturbances to the slope. This effect is most pronounced at low and high conductivity, as shown in Figure 6.1. It is especially important to be aware of this effect when scaling up to larger columns.
When changing to a different mixer size, the slope of the actual gradient can be compared with the programmed gradient by performing a test run without a column.

![Graph showing programmed gradient and actual gradient](image)

Fig 6.1. The actual gradient will differ from the programmed gradient in a system with too large a mixer.

Gradient delay volume

When planning a gradient run, it is important to consider the system’s delay volume prior to the column. This is called the gradient delay volume. In the chromatogram, the actual gradient will be delayed compared with the programmed gradient (%B curve), as seen in Figure 6.2. The shape of the gradient is also affected by mixer effects. Make sure that the conductivity reaches the programmed gradient value by the end of the run, by continuing to run at the final elution conditions until the target value is reached. The volume to add needs to be determined experimentally.

In ÄKTA design systems, the default mixer effect has been included in the so-called “gradient delay volume” of the system/UNICORN™ software.

![Graph showing gradient delay volume](image)

Fig 6.2. Actual gradient (blue) compared with programmed gradient (green).

Maintaining a constant gradient slope when changing column size

Gradient length is often defined in terms of X column volumes (CV). Maintaining a constant gradient will ensure that the slope of the gradient will not change when scaling up or down. For example, if the gradient length is 10 CV, for a 1 ml column this corresponds to 10 ml and for a 10 ml column this corresponds to 100 ml.
The gradient delay volume is independent of the column used; it will be the same as long as the columns are run in the same system and with the same mixer. For example, if the gradient delay volume is 5 ml, add 5 ml when running the columns in the example above. Thus, for the 1 ml column, the total volume added would correspond to 10 ml + 5 ml, and for the 10 ml column it would correspond to 100 ml + 5 ml.

If the system comes with preprogrammed methods, the gradient delay volume is included in the method (e.g., in the system volume compensation block).

Appendix 3 describes how to calculate delay volumes.

During scale-up or scale-down, make sure that the optimal mixer size is used (see above). If the new scale requires a mixer change, remember to also update the "gradient delay volume" in the system/UNICORN software.
Chapter 7
System pressure

A back pressure will be generated when running liquid through the system. If the back pressure exceeds any of the set pressure limits, an alarm will be triggered and the system will stop. This may be the most common problem in chromatography. It is therefore important to understand the cause of high pressure to be able to avoid it.

Back pressure contributions

It is important to keep the back pressure as low as possible because columns and system components are often sensitive to high pressure. Table 7.1 highlights contributions to high back pressure and includes suggestions on how to avoid it.

Table 7.1. Contributions to back pressure

<table>
<thead>
<tr>
<th>Source</th>
<th>How to minimize the contribution</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubing</td>
<td>Keep the tubing as short as possible and optimize the i.d.</td>
<td>A larger i.d. will decrease the back pressure but will have a negative effect on resolution; see Chapter 3.</td>
</tr>
<tr>
<td>Inline filter</td>
<td>Change the filter regularly.</td>
<td>The inline filter will prevent particles in the solutions from entering the flow path and column. With time, the filter will start to clog and the pressure will increase.</td>
</tr>
<tr>
<td>Buffer/solution</td>
<td>Decrease the flow rate when running high-viscosity buffers/solutions.</td>
<td>Mixing different liquids, e.g., in a gradient, can increase the viscosity and result in higher back pressure.</td>
</tr>
<tr>
<td>Temperature</td>
<td>Decrease the flow rate when running at low temperature.</td>
<td>Viscosity increases at lower temperature.</td>
</tr>
<tr>
<td>Sample</td>
<td>Dilute viscous samples or decrease the flow rate during sample application. Remove the inline filter if the system pump is used to apply the sample.</td>
<td>To avoid over-pressure, some systems have pressure-controlled sample application, where the flow rate is decreased as the pressure increases.</td>
</tr>
<tr>
<td>Column</td>
<td>Clean the column.</td>
<td>See column instructions for cleaning procedures.</td>
</tr>
<tr>
<td></td>
<td>Do not use smaller beads or column diameter than the application requires.</td>
<td>Smaller beads will give higher resolution but also higher back pressure.</td>
</tr>
<tr>
<td>Flow restrictor</td>
<td>When using chromatography media that generate low pressure at high flow rate, consider removing the flow restrictor. Note, however, that there is a risk of air bubbles entering the UV/Vis absorbance cell.</td>
<td>The reason the flow restrictor is present is to prevent air bubbles in the UV/Vis absorbance cell. This is important when running columns that generate high back pressure.</td>
</tr>
</tbody>
</table>
Tubing contribution to back pressure

To keep peak broadening low, the tubing should have a small i.d. and be short (see Chapter 3). The drawback is that narrow tubing increases the back pressure in the system. If the system is equipped with tubing that is too narrow, the pressure generated can be too high for the column being used.

![Graph showing the effect of tubing i.d. on back pressure](image)

Fig 7.1. Effect of tubing i.d. on back pressure. Length of tubing: 200 cm. Flow rate: 10 ml/min. Solution used: water at room temperature.

Figure 7.1 shows the pressure generated by tubing of different i.d.’s. In the example, a tubing i.d. of at least 0.35 mm is required to run a column with a pressure limit of 0.5 MPa. In practice, the recommendation is to not run close to the column pressure limit, because the pressure alarm will stop the system. In the example above, the recommendation would be to use 0.5 mm tubing.

The effect of back pressure on column and packed bed

The column and the packed bed have different pressure tolerance as described in Figure 7.2.

Fig 7.2. Be aware of the different pressure limits. A) precolumn pressure, B) delta column pressure (Δp).
The pressure affecting the column hardware depends on the back pressure generated by the column itself and the back pressure generated by the system after the column. If the pressure limit for the column hardware is exceeded, the column might start leaking. The pressure affecting the packed bed depends only on the flow rate and viscosity of the solution and not on the system. When the flow rate is too high and/or a high-viscosity solution is used, the pressure limit for the packed bed might be exceeded. The packed bed pressure limit is the maximum allowed pressure drop over the packed bed. When the pressure limit is exceeded, the particles of the chromatography medium become distorted and/or are forced to the bottom of the column and cause the back pressure to increase. This leads to gap formation or a collapse of the packed bed, resulting in poor chromatographic performance; see Figure 7.2 B.

Pressure monitoring

System pressure is generated by the complete system flow path. ÄKTA chromatography systems measure this pressure at the system pump (Fig 7.3).

Some systems have additional pressure sensors before and after the column (Fig 7.3: p1 and p2) that allow calculation of the pressure drop (Δp) over the column. This gives useful information about the condition of the packed bed. A Δp that is too high for a newly packed column indicates that packing can be improved. With time, as the column collects impurities due to nonspecific adsorption, the Δp will increase. To regain optimal column conditions, perform cleaning-in-place (CIP) and/or change the column top filter.

![Fig 7.3. System pressure, generated by the complete system flow path, is measured in ÄKTA chromatography systems at the system pump. $\Delta p = p1$ (pressure generated after and by the column itself) – p2 (pressure generated after the column).](image)

The maximum pressure over the packed bed (Δp) is an approximate limit. It is dependent on the characteristics of the chromatography medium and on sample/liquid viscosity. The measured value also includes the pressure generated by the column tubing. For many columns, the recommended flow rate is a better guideline for protecting the packed bed.
Pressure alarms

To protect column hardware and packed chromatography medium bed against pressure that is too high, it is important to use correct settings for the pressure alarms. To find out the pressure limits, check the column and medium instructions, and set the alarm(s) as described below.

For systems that measure the pressure only at the system pump, the pressure alarm limit should be set to the lowest limit of either the column hardware or the packed medium bed. For a system with three pressure sensors, the pressure alarm for pre-column pressure (p1) should be set to the column hardware limit. This is affected by the pressure generated by the column plus the system flow path located after the column. The pressure alarm for \(\Delta p \) should be set to the limit for the packed bed, if available.

The relation between the pressures is:

\[\Delta p = p_1 - p_2 \]

Function of a flow restrictor

A flow restrictor creates a steady back pressure. It therefore prevents air bubbles, which may disturb detector signals, from forming after the column due to the column pressure drop. In addition, a flow restrictor can be used to prevent siphoning if, for example, solutions are placed above the pump. A flow restrictor can be compared to a cork on a bottle of champagne (Fig 7.4). The pressure generated by the restrictor will help to keep the air dissolved in the solution.

![Fig 7.4. The flow restrictor can be compared to the cork on a champagne bottle.](image)

A hypothetical example of how a flow restrictor affects the packed column at a flow rate of 1 ml/min is shown in Figure 7.5. With no flow restrictor (Fig 7.5A), the flow rate generates a pump pressure reading of 0.3 MPa. This pressure equals the pressure drop over both the chromatography medium and the column hardware. For simplification, the back pressure generated by tubing after the column is excluded in this example. When a flow restrictor generating a back pressure of 0.2 MPa is added after the column (Fig 7.5B), the pressure over the column hardware (p1) is affected and will be 0.5 MPa. Hence, the system pressure reading at the system pump will be 0.5 MPa. However, the pressure drop over the packed bed is still 0.3 MPa, because \(\Delta p = p_1 - p_2 \).
The flow restrictor only affects the column hardware pressure whereas the pressure on the packed bed is unaffected.

Removal of flow restrictor

Our recommendation is to keep the flow restrictor inline because there is a risk of getting detector disturbances from air bubbles that are formed in the solution.

When using HiTrap™ and HiPrep™ columns with a system that monitors the pressure only at the pump, consider the following modification: Instead of removing the flow restrictor to avoid triggering the high pressure alarm, increase the pressure limit to include the pressure contribution from the flow restrictor (e.g., 0.2 MPa). Do not set the pressure limit to more than 0.5 MPa, however, because this is the column hardware pressure limit for HiTrap and HiPrep columns. (Note: This has already been implemented in the UNICORN column list for ÄKTAxpress™ supported columns).

Troubleshooting high back pressure

A number of reasons could explain high back pressure (see Table 7.1). A logic-based approach to identify the problem is presented in Figure 7.6. First bypass or disconnect the column. If the high pressure is released in bypass mode, the column needs to be checked and cleaned. See Appendix 4 for a workflow suggestion. If the high pressure is not related to the column, locate the system blockage as described below.

For information about how to clean the column, please see the column’s instruction sheet.
Fig 7.6. How to troubleshoot high back pressure.

To find the flow path blockage, start the pump at a flow rate that will keep the pressure low enough so that the alarm is not triggered. Take note of the measured system pressure. Then, starting from the fraction collector, loosen the first connector. If there is no change in pressure, tighten it again and move to the next connector (toward the pump). Loosen this connector, check for any change in pressure, tighten, etc. until the one that releases the pressure has been located. This is where the flow path blockage is. Very often the blockage is caused by obstructed tubing. If this is the case, replace as needed. In less severe cases, perform cleaning-in-place of the system flow path.

In some cases, a system calibration is needed to reset the pressure sensors. This should be performed without any column inline. For details, see the specific system user manual.

Viscous samples and solutions

The system back pressure is affected by the viscosity of a liquid. Some salts, high salt concentrations, and low temperatures increase viscosity of the liquids, as well as mixtures between organic and aqueous solutions. Crude samples (e.g., cell lysates) are often highly viscous.

Figure 7.7 shows some examples of how the viscosity varies for commonly used liquids and temperatures in chromatography.
The viscosity of common buffers and solutions, even including 1 M NaCl, will only be slightly higher than water and will therefore normally not become an issue during chromatographic runs (see Fig 7.7A). When mixing water with organic solvents (e.g., 20% ethanol), the viscosity will be significantly higher (see Fig 7.7B) and the generated back pressure substantially increased. This phenomenon can often be noticed when washing ethanol from a column. To keep within the pressure limit, the flow rate might need to be reduced.

The pressure increases with decreasing temperature because viscosity is temperature dependent. At cold-room temperature (approximately 4°C), the pressure generated will be nearly twice as high compared with a room-temperature (approximately 25°C) run (see Fig 7.7C). Due to the column pressure limit, a decreased flow rate is needed to avoid high pressure.

Pressure-controlled sample application

When applying sample, the buildup of material on the column can be significant, leading to the pressure limit being reached. The buildup consists of contaminants such as denatured proteins, nucleic acids, and lipids. This buildup of material can occur even if the sample has been clarified before the run.

In some ÄKTA systems, pressure-controlled sample application can be used. During the run, the system will then monitor the pressure, and if it approaches the set pressure limit, the flow rate will gradually decrease to avoid triggering the alarm.
Figure 7.8 shows an example in which 150 ml of a sample was applied onto a column. After approximately 110 ml (i.e., 44 min), the pressure became too high and the flow rate was automatically down-regulated so that the pressure stayed at an acceptable level. When the pressure decreased (during the wash phase), the flow rate was automatically up-regulated.

Sample: Elution pool from MabSelect SuRe™; pH 6.75, conditions adjusted to 15 mSiemen/cm with NaCl

System: ÄKTA avant 25

Column: HiScreen™ Capto™ Adhere

Load: Flowthrough mode, 150 ml of 200 mg Mab/ml

Flow rate: 2.5 ml/min

![Fig 7.8. Pressure-controlled sample application.](image)
Chapter 8
Sample monitoring and detectors

Inline detectors are used in protein purification. To monitor the purification process, it is common to use a UV/Vis absorbance detector, because a majority of proteins will absorb light at 280 nm. The area under the absorbance curve corresponds to the protein concentration and gives an indication of the amount of protein.

Other types of detectors can be used to gather more information about the purification process, for example, conductivity and pH monitors.

Monitoring UV/Vis absorbance

Wavelength to use

Measuring UV absorbance at 280 nm will provide information about eluted proteins and the total protein content. The ability of proteins to absorb UV light is predominantly due to the presence of tryptophan, tyrosine, and phenylalanine, which strongly absorb at 280 nm. However, some proteins have only a few or non-exposed aromatic amino acid residues and therefore show weak absorbance at 280 nm.

Apart from proteins, other biomolecules also have the ability to absorb light. For a purification scheme it is sometimes useful to check these. Table 8.1 shows some examples of wavelengths that can be used to detect different biomolecules.

Table 8.1. Wavelength to detect different biomolecules

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>214</td>
<td>Peptide bonds, part of peptides and proteins</td>
</tr>
<tr>
<td>230</td>
<td>Organic compounds or chaotropic salts</td>
</tr>
<tr>
<td>260</td>
<td>DNA/RNA</td>
</tr>
<tr>
<td>280</td>
<td>Aromatic amino acids residues (tryptophan, tyrosine, and phenylalanine)</td>
</tr>
<tr>
<td>390/420</td>
<td>Coenzymes (e.g., in hemoproteins)</td>
</tr>
<tr>
<td>490</td>
<td>Green fluorescent protein (GFP)</td>
</tr>
<tr>
<td>600</td>
<td>Protein aggregates</td>
</tr>
</tbody>
</table>

If obtaining a low absorption reading at 280 nm, try detection at 214 nm where peptide bonds absorb light.

ÄKTA UV/Vis absorbance detectors are linear up to 2000 mAU. Signals higher than this are not proportional to the protein concentration.

Some chromatography systems have multi-wavelength detectors that view target protein and critical impurities simultaneously. Some proteins absorb at multiple wavelengths, for example, GFP, which also has an absorbance maximum at 490 nm. Measuring at both 280 and 490 nm will in this case help to identify which peak contains the target protein. See Figure 8.1.
The possibility of gaining information about contaminants in the sample can be useful during purification. Strong absorbance around 230 nm indicates that organic compounds or chaotropic salts are present. A high reading at 260 nm indicates the presence of nucleic acids.

The ratio A_{260}/A_{280} is a measure of DNA and/or RNA purity, and is thus a useful analysis method when purifying DNA or RNA. If the ratio is close to 2 it indicates highly pure DNA/RNA.

How to calculate protein concentration and amount

The software for ÄKTA chromatography systems includes functionality for calculating concentrations and amounts. Simply enter the extinction coefficient for the protein and the path length of the UV/Vis flow cell used, and the software will calculate concentration and amount based on the UV absorbance data at 280 nm.

To obtain highly accurate results, two criteria are very important:

1. The UV/Vis absorbance signal must be within the linear range of the UV/Vis detector.
2. The exact UV/Vis flow cell path length should be used in the calculation.

For ÄKTA avant and ÄKTAxpress, the exact path length has been predetermined and is included in the software calculations. For other systems, the exact path length of each individual system needs to be determined experimentally by measuring the absorbance of one or several solutions with known absorbance (see ordering information to determine which UV/Vis flow cell calibration kit to use). When using a UV/Vis flow cell calibration kit, the exact path length is determined according to Lambert-Beer’s law (see below). The exact path length must then be manually entered into the system setting of the software.

Which UV/Vis flow cell to use

According to Lambert-Beer’s law, the relationship between absorbance and concentration can be described as:

$$A = \varepsilon \times b \times c$$

where

- A = absorbance,
- ε = extinction coefficient,
- b = cell path length, and
- c = concentration.

To get the absorbance signal within the linear absorbance range, different cell lengths can be chosen (described in Table 8.2).
Table 8.2. Effect of UV/Vis flow cell path length

<table>
<thead>
<tr>
<th>Absorbance signal</th>
<th>Effect of UV/Vis flow cell path length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Switching to a longer cell will increase the signal.</td>
</tr>
<tr>
<td>High</td>
<td>If the absorbance is outside of the linear range, switching to a shorter cell will decrease the signal.</td>
</tr>
</tbody>
</table>

The amino acid sequence of a protein can be used to calculate its theoretical absorbance coefficient. Web-based calculators are available to assist in determining this number. See, for example, http://www.biomol.net/en/tools/proteinextinction.htm for one such calculator.

Liquids and compounds

During purification runs, different solutions and compounds can cause deviations in the UV/Vis absorbance curve. Table 8.3 includes a list of some common examples and how to address them.

Table 8.3. Dealing with deviations in the UV/Vis absorbance curve

<table>
<thead>
<tr>
<th>Effect</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unexpected drift in the UV/Vis absorbance curve or False negative or positive peaks</td>
<td>Difference in refractive index, e.g., when switching from: - Water to organic solvent during RPC - High salt to no salt during HIC</td>
<td>Switch to a solvent with a different refractive index if possible. When evaluating results and performing peak integration, adjust the baseline.</td>
</tr>
<tr>
<td>High UV/Vis absorbance baseline</td>
<td>The solution is absorbing UV light, e.g.: - Citrate buffers at 214 nm - Impure imidazole at 280 nm - Oxidized form of DTE at 280 nm</td>
<td>Use another buffer system instead of citrate if possible. Use imidazole of high purity. DTE, a reducing agent, oxidizes over time. Use only freshly made solutions.</td>
</tr>
</tbody>
</table>

Noisy and insensitive UV/Vis absorbance measurements

The most common cause of noisy and insensitive UV/Vis absorbance curves is a dirty flow cell. Clean the flow cell as described in Chapter 10.

The problem can also be due to air bubbles within the flow cell. See the discussion on flow restrictors in Chapter 7 for more details.

An aging UV lamp

With time, the light intensity of the UV/Vis absorbance detector lamp will decrease. When a low intensity warning is given, it is time to replace the lamp.

Note: The displayed UV/Vis absorbance signal will be the correct value as long as no intensity warning is issued. This is possible because the detector uses a reference signal against which the measured UV/Vis absorbance is normalized.
Monitoring conductivity

The conductivity monitor is used to detect changes in salt concentration and other charged molecules during a chromatographic run. It can be used to gather a variety of information as described in Table 8.4.

Table 8.4. Examples of information gathered from conductivity monitoring

<table>
<thead>
<tr>
<th>Used during</th>
<th>Used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibration</td>
<td>Stable signal indicates that column is equilibrated</td>
</tr>
<tr>
<td>Sample application and wash</td>
<td>Detection of salt peaks</td>
</tr>
<tr>
<td>Gradient elution</td>
<td>Monitoring gradient formation</td>
</tr>
<tr>
<td>Desalting</td>
<td>Detection of salt peaks</td>
</tr>
<tr>
<td>System troubleshooting</td>
<td>Erroneous flow rate seen as disturbances in conductivity curve</td>
</tr>
</tbody>
</table>

A current is applied across the conductivity cell, and the electrical resistance between the electrodes is measured and used to calculate the conductivity in the eluent.

The conductivity is linear only to a salt concentration of approximately 0.3 M. It is therefore important to measure the conductivity of the solution that is used rather than calculating it.

In a salt gradient, a decrease in linearity will be seen with increasing salt concentration (Figure 8.2).

![Illustrated relationship between conductivity and salt concentration.](image)

Conductivity measurements are temperature dependent

The conductivity signal will increase with temperature according to:

\[C_t = C_{t\, cal} (1 + \alpha)^{\Delta t} \]

where \(C_t \) = the measured conductivity; \(C_{t\, cal} \) = conductivity at reference temperature; and \(\Delta t \) = the difference between reference temperature and actual temperature.

The constant \(\alpha \) is concentration- and salt-dependent, but 0.02 is a good mean value for many salts.

In all ÄKTA systems (except for ÄKTAxpress), a temperature sensor is mounted within the conductivity cell to allow temperature compensation. The compensated conductivity value is displayed, which means that conductivity curves generated at different temperatures can be compared.
Monitoring pH

For most ÄKTA systems, a pH electrode can be connected at the low pressure side (i.e., after the UV/Vis absorbance detector). To receive accurate measurements, it is important to calibrate the pH electrode. pH electrodes are sensitive to, for example, 20% ethanol, and it is therefore important to store them in appropriate storage solutions (see the pH detector’s user manual).

⚠️ If a FR-904 flow restrictor is used, make sure that the pH sensor is placed after the flow restrictor because it cannot withstand the back pressure generated.

Other detectors

With some systems, it is possible to incorporate signals from an external detector, that is, from a non ÄKTA detector. This can be useful for applications where, for example, highly sensitive detectors or more qualitative information is needed.

Common detectors used in combination with ÄKTA systems includes fluorescence, light scattering, and refractive index.
Chapter 9
Fraction collection

Preparative chromatography requires that material eluted from the column is collected. Two common methods, employing either a fraction collector or a multiport outlet valve, are used to direct the eluent to different containers (tubes or bottles). Table 9.1 compares these methods.

Table 9.1. Two methods for collecting purified sample

<table>
<thead>
<tr>
<th>Fraction collector</th>
<th>Outlet fractionation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction size 100 µl to 250 ml</td>
<td>Fraction size > 5 ml</td>
</tr>
<tr>
<td>Possible to collect many fractions (typically 20–200)</td>
<td>Number of fractions limited to number of outlet valve ports (typically 8–10/valve)</td>
</tr>
<tr>
<td>Used for complex samples where several peaks are expected</td>
<td>Used when a few, defined peaks are expected</td>
</tr>
</tbody>
</table>

The volume of the collected fractions is often different during different steps in a chromatographic run. During sample application, larger fraction volumes are collected as a safety measure in case the target protein were to pass straight through the column. The flowthrough is collected in one or a few fractions corresponding to the volume of the sample applied and the subsequent wash. During elution, smaller fraction volumes are usually collected, and an eluting peak is normally divided into a number of fractions in order to obtain pure protein from overlapping peaks.

Different fractionation modes can often be chosen for fraction collectors that have tubes or wells positioned in rows. Collection can then often be performed from left to right for each row or in serpentine mode, where every other row goes in the opposite direction. When serpentine mode is chosen, the risk of spillage is minimized.

Straight fractionation and peak fractionation

To be able to analyze different parts of the peak, the fraction size during elution is usually set to a value smaller than the expected peak volume. When straight (sometimes called fixed) fractionation is used, the fraction collector will continuously switch tubes according to the set volume throughout the entire fractionation, as shown in Figure 9.1A. To further increase the purity of the collected protein peaks, “peak fractionation” can be used. The UV/Vis detector is then used to determine when to start and stop peak fractionation, as shown in Figure 9.1B.

Straight fractionation and peak fractionation can also be combined during a run.
Fractionation delay volume

The fractionation delay volume is the volume between the UV/Vis detector’s flow cell and the fraction collector. It is important that the correct delay volume is entered in the software. The defined delay volume will be used by the system to calculate the time T_1, which is when the peak reaches the fraction collector. T_1 is used to synchronize the fractionation marks in the chromatogram with the tube switch of the fraction collector (see Fig 9.2). At the start of the fraction collection, the delay volume is directed to waste or the first fractionation tube depending on which system is used.

Fig 9.2. T_1 is the time when the fraction collector moves in order to collect the fractions to match what was detected in the UV/Vis detector. $T_1 = T_0 + \text{Delay volume } / \text{flow rate.}$
The delay volume depends on the tubing and components included in the flow path. Determine the delay volume theoretically or experimentally by including the volume from all tubing and components between the absorbance detector and the fractionation tip. Appendix 3 provides a detailed description of how to determine the delay volume.

Remember to include the tubing to and from the fraction collector’s accumulator if that is used.

Spillage-free fractionation

To minimize spillage, a drop synch function is often included in ÄKTA fraction collectors. A sensor at the fraction collector outlet detects the presence of droplets and synchronizes tube change. The maximum flow rate for drop sync depends on the surface tension of the liquid and the i.d. and shape of the fractionation tubing tip. When the liquid starts to flow continuously, it cannot be used. The maximum flow rate is also limited by how fast droplets can be detected. Typically, drop sync can be used for lower flow rates (i.e., below 2 to 3 ml/min).

Another way to avoid spillage between fractionation tubes is to include an accumulator. During tube change, the accumulator stores liquid, which is then pushed out rapidly when a new tube is in position for collection. The accumulator can be used for higher flow rates and is included in Frac-950 and the fraction collector of ÄKTA avant. See Appendix 5 for how to troubleshoot fraction collection issues.
Chapter 10
Cleaning and storage of system components

System lifetime and performance will be maximized if proper cleaning and storage routines are followed. This chapter describes how to maintain the system. Table 10.1 provides maintenance tips to help keep the system running problem-free for a long period of time.

Table 10.1. Tips on preventive maintenance

<table>
<thead>
<tr>
<th>Purpose</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep back pressure low by preventing particles entering the flow path.</td>
<td>Use filtered solutions. A filter pore size of 0.45 µm is recommended. Use inlet filters on all inlet tubing (Fig 10.1A). Replace the inline filter regularly (Fig 10.1B).</td>
</tr>
<tr>
<td>Clean system to prevent carryover between runs and contamination of the flow path.</td>
<td>Clean the system flow path regularly with 0.5 to 1 M NaOH. Create appropriate cleaning procedures. Replace pump rinse solution (20% ethanol) once a week (only applicable for pumps with a rinsing system).</td>
</tr>
<tr>
<td>Keep system clean to prevent microbial growth in the flow path.</td>
<td>Use 20% ethanol as storage solution when system will not be used for 2 days or more.</td>
</tr>
<tr>
<td>Avoid condensation in system components.</td>
<td>Leave the power ON if the system is in cold room (the UV/Vis absorbance detector lamp can be turned off to save lamp run time). When the system is moved to a new temperature, allow some time (usually hours) for it to adjust to ambient temperature.</td>
</tr>
<tr>
<td>Protect exterior of the instrument.</td>
<td>Wipe off spillage to avoid corrosion of metal parts.</td>
</tr>
<tr>
<td>Prolong lifetime of the UV/Vis absorbance detector lamp.</td>
<td>Turn off the UV/Vis absorbance detector lamp on UPC-900, ÄKTAxpress, and ÄKTAprime plus when not in use.</td>
</tr>
<tr>
<td>Avoid software connection problems.</td>
<td>If system is controlled by a computer, reboot the system and PC at least every 14 days. Remove temporary files regularly.</td>
</tr>
</tbody>
</table>

Fig 10.1. Inlet filter (A) is mounted on the inlet tubing. Inline filter (B) is connected in the flow path after or in the mixer. Note: An inline filter is also referred to as an online filter in some literature.
Cleaning the system

Minimal cleaning

Because salt from buffer solutions might precipitate and clog valves and tubing, wash the entire system flow path with buffer or water after every run. It is also important to remove any sample from the inlet tubing as soon as possible after each run.

Thorough cleaning

A general cleaning recommendation is to flush the system once a week when it is in use, with 0.5 to 1 M NaOH. Start with flushing the pumps at a moderate flow rate.

Prepare a system cleaning method—and use it! Perform cleaning without a column attached or by bypassing the column(s). Make sure that the entire flow path is cleaned, and change valve position while washing the system flow path with cleaning solution. Clean all tubing including the fraction collector tubing, accumulator, and the manual injection port.

See Table 10.2 for suggested cleaning solutions.

- By generating a back pressure, for example, by placing flow restrictors on used waste tubing, the cleaning solution will, during the cleaning method, more easily reach “dead” spaces, for example, within valves.

- Wear gloves and safety glasses when using hazardous/corrosive chemicals.

- Make sure that valve ports without tubing connected are plugged during cleaning and that all waste tubing is inserted in waste containers.

<table>
<thead>
<tr>
<th>To remove</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffers and salts</td>
<td>Water</td>
</tr>
<tr>
<td>Proteins, lipids, cell debris</td>
<td>0.5 to 1 M NaOH</td>
</tr>
<tr>
<td>Proteins, lipids, and cell debris not removed by NaOH</td>
<td>1 to 10 M acetic acid</td>
</tr>
<tr>
<td>Lipids and other hydrophobic components not removed by NaOH or acetic acid</td>
<td>Organic solvent, for example, 100% isopropanol</td>
</tr>
</tbody>
</table>

System storage

Store the system in 20% ethanol to prevent microbial growth when not in use for more than 2 days. When preparing the system for storage, prevent precipitation of buffer components upon mixing with ethanol by rinsing the system with water. Then fill the system with a 20% ethanol solution. Make sure that the entire flow path is filled—including all inlet and outlet tubing.

- For some ÄKTA systems, premade methods for preparing the system for storage are included in the software.

- Prior to using the system after storage, remove the ethanol using water.
Cleaning recommendations

System pump

Because precipitated salts may clog valves and shorten seal lifetime, it is important to rinse the pump with buffer or water as soon as possible after a run.

Most ÄKTA pumps have a rinsing system with a circulating 20% ethanol solution. Figure 10.2 shows an overview of the rinsing system. The rinsing solution is in contact with the back side of the pump heads at all times and prevents microbial growth. Change the rinsing solution once a week. Note that the solution evaporates over time. If the optional path (without recirculation) is used, the rinsing solution needs to be filled more frequently.

![Rinsing system diagram](image)

Fig 10.2. Schematic view of the pump rinsing system.

Sample pump

Rinse the sample pump after each run, with water, buffers, or cleaning agents that remove any sample traces. For a sample pump with a rinsing system, for example, ÄKTA avant, follow the same procedure as described above.

UV/Vis flow cell

The cleaning requirement of the UV/Vis flow cell will vary. For general cleaning, use 10% Decon™ 90 as described below. If use of a detergent is not desired or if the cell is not sufficiently clean after use of 10% Decon 90, test one of the solutions listed in Table 10.3.

![Flow cell diagram](image)

Table 10.3. Solutions for cleaning absorbance detector flow cell

<table>
<thead>
<tr>
<th>To remove</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffers, salts, and detergents</td>
<td>Water</td>
</tr>
<tr>
<td>Proteins</td>
<td>0.5 to 1 M NaOH for 15 min, then flush with water</td>
</tr>
<tr>
<td>Lipids and other hydrophobic components</td>
<td>30% to 100% isopropanol, then flush with water</td>
</tr>
</tbody>
</table>
pH electrode

The pH electrode is one of the most sensitive components in the system. Recommended solutions for cleaning the pH electrode are listed in Table 10.4.

Table 10.4. Solutions for cleaning pH electrode

<table>
<thead>
<tr>
<th>To remove</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt deposits</td>
<td>Alternating 0.1 M HCl and 0.1 M NaOH</td>
</tr>
<tr>
<td>Lipid deposits</td>
<td>Detergent or organic solvent</td>
</tr>
<tr>
<td>Protein deposits</td>
<td>1% pepsin in 0.1 M HCl. Remove thoroughly afterwards!</td>
</tr>
</tbody>
</table>

After the electrode has been cleaned, it needs to be restored and calibrated. See the user manual for guidance.

Fraction collector

It is important to keep both the exterior of the fraction collector and the drop synch photo cell clean. Wipe off spillage immediately and use a cloth and water or mild cleaning agent to clean the exterior. The drop sync photo cell should be wiped carefully with a damp cloth. Usually the tube rack can be disassembled for cleaning.

⚠️ After cleaning, check that the fractionation tubing is positioned correctly and that it does not block the light path of the drop sensor. If the light path is blocked, an error message will be received during fractionation.

🔍 For fraction collectors that have an accumulator for spillage-free fractionation, remember to also add an accumulator wash in the system cleaning method.
Appendices
Appendix 1
System components in laboratory-scale ÄKTA systems

Table A1.1 highlights some system components and the ÄKTA system they relate to. For each component, information such as pressure limit, flow rate range, internal volume, etc., is noted.

Table A1.1. Parameters for ÄKTA system components (see page 58 for footnotes)

<table>
<thead>
<tr>
<th>Pumps</th>
<th>Flow rate range</th>
<th>Stroke volume¹/total internal volume</th>
<th>Max pressure</th>
<th>Used with²</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÄKTAprime plus pump</td>
<td>0.1–50 ml/min</td>
<td>200 µl/1 ml</td>
<td>1 MPa (10 bar, 145 psi)</td>
<td>ÄKTAprime plus</td>
</tr>
<tr>
<td>P-901</td>
<td>0.01–100 ml/min</td>
<td>286 µl/1.4 ml</td>
<td>10 MPa (100 bar, 1450 psi)</td>
<td>ÄKTAprime plus, ÄKTApurifier 100, ÄKTAexplorer 100</td>
</tr>
<tr>
<td>P-903</td>
<td>0.001–10 ml/min</td>
<td>36 µl/0.6 ml</td>
<td>25 MPa (250 bar, 3625 psi)</td>
<td>ÄKTAprime plus, ÄKTApurifier 10, ÄKTAexplorer 10</td>
</tr>
<tr>
<td>P-905</td>
<td>0.001–2 ml/min</td>
<td>36 µl/0.6 ml</td>
<td>35 MPa (350 bar, 5075 psi)</td>
<td>ÄKTAmicro</td>
</tr>
<tr>
<td>P-920</td>
<td>0.01–20 ml/min</td>
<td>10 ml/10 ml</td>
<td>5 MPa (50 bar, 725 psi)</td>
<td>ÄKTAmicro</td>
</tr>
<tr>
<td>P-960</td>
<td>0.1–50 ml/min</td>
<td>200 µl/1 ml</td>
<td>2 MPa (20 bar, 290 psi)</td>
<td>Sample pump to ÄKTAprime, ÄKTApurifier, ÄKTAexplorer</td>
</tr>
<tr>
<td>ÄKTAxpress pump</td>
<td>0.1–65 ml/min</td>
<td>286 µl/1.4 ml</td>
<td>3 MPa (30 bar, 435 psi)</td>
<td>ÄKTAxpress</td>
</tr>
<tr>
<td>P9</td>
<td>0.001–25 ml/min</td>
<td>54 µl/0.55 ml</td>
<td>20 MPa (200 bar, 2900 psi)</td>
<td>ÄKTA avant 25</td>
</tr>
<tr>
<td>P9-S</td>
<td>0.01–25 ml/min</td>
<td>286 µl/1.4 ml</td>
<td>10 MPa (100 bar, 1450 psi)</td>
<td>Sample pump to ÄKTA avant 25</td>
</tr>
<tr>
<td>P9H</td>
<td>0.01–150 ml/min</td>
<td>429 µl/1.8 ml</td>
<td>5 MPa (50 bar, 725 psi)</td>
<td>System and sample pump to ÄKTA avant 150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mixers</th>
<th>Internal volume</th>
<th>Max pressure</th>
<th>Used with²</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-925 (magnetic stirrer)</td>
<td>90 µl</td>
<td>35 MPa (350 bar, 5075 psi)</td>
<td>ÄKTAmicro</td>
</tr>
<tr>
<td>M-925 (magnetic stirrer)</td>
<td>0.2 ml</td>
<td>35 MPa (350 bar, 5075 psi)</td>
<td>ÄKTAmicro</td>
</tr>
<tr>
<td>M-925 (magnetic stirrer)</td>
<td>0.6 ml</td>
<td>25 MPa (250 bar, 3625 psi)</td>
<td>ÄKTAmicro, ÄKTApurifier 10, ÄKTAexplorer 10</td>
</tr>
<tr>
<td>M-925 (magnetic stirrer)</td>
<td>2 ml</td>
<td>25 MPa (250 bar, 3625 psi)</td>
<td>ÄKTApurifier 100, ÄKTAexplorer</td>
</tr>
<tr>
<td>M-925 (magnetic stirrer)</td>
<td>5 ml</td>
<td>25 MPa (250 bar, 3625 psi)</td>
<td>ÄKTApurifier 100, ÄKTAexplorer 100</td>
</tr>
</tbody>
</table>
Mixers continued

<table>
<thead>
<tr>
<th>mixer</th>
<th>Internal volume</th>
<th>Max pressure</th>
<th>Used with</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-925 (magnetic stirrer)</td>
<td>12 ml</td>
<td>10 MPa (100 bar, 1450 psi)</td>
<td>ÅKTApurifier UPC 100, ÅKTApurifier 100, ÅKTAexplorer 100</td>
</tr>
<tr>
<td>ÄKTAxpress mixer (static)</td>
<td>0.37 ml</td>
<td>3 MPa (30 bar, 435 psi)</td>
<td>ÅKTAxpress</td>
</tr>
<tr>
<td>M9</td>
<td>0.6 ml</td>
<td>20 MPa (200 bar, 2900 psi)</td>
<td>ÅKTA avant 25</td>
</tr>
<tr>
<td>M9</td>
<td>1.4 ml</td>
<td>20 MPa (200 bar, 2900 psi)</td>
<td>ÅKTA avant</td>
</tr>
<tr>
<td>M9</td>
<td>5 ml</td>
<td>20 MPa (200 bar, 2900 psi)</td>
<td>ÅKTA avant</td>
</tr>
<tr>
<td>M9</td>
<td>15 ml</td>
<td>5 MPa (50 bar, 725 psi)</td>
<td>ÅKTA avant 150</td>
</tr>
</tbody>
</table>

Inline filter

<table>
<thead>
<tr>
<th>Filter holder</th>
<th>Internal volume</th>
<th>Max pressure</th>
<th>Used with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter holder</td>
<td>115 µl</td>
<td>35 MPa (350 bar, 5075 psi)</td>
<td>ÅKTApurifier UPC 100, ÅKTApurifier 100, ÅKTAexplorer 100</td>
</tr>
<tr>
<td>Filter holder</td>
<td>20 µl</td>
<td>35 MPa (350 bar, 5075 psi)</td>
<td>ÅKTApurifier UPC 10, ÅKTApurifier 10, ÅKTAexplorer 10, ÅKTAmicro</td>
</tr>
<tr>
<td>Filter holder included in mixer M9</td>
<td>50 µl</td>
<td>20 MPa (200 bar, 2900 psi)</td>
<td>ÅKTA avant</td>
</tr>
</tbody>
</table>

Absorbance detector flow cells

<table>
<thead>
<tr>
<th>Cell volume/Total volume</th>
<th>Max pressure</th>
<th>Used with</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mm for UPC-900</td>
<td>2 µl/30 µl</td>
<td>4 MPa (40 bar, 580 psi)</td>
</tr>
<tr>
<td>5 mm for UPC-900</td>
<td>6 µl/20 µl</td>
<td>4 MPa (40 bar, 580 psi)</td>
</tr>
<tr>
<td>2 mm for UV-900</td>
<td>2 µl/7 µl</td>
<td>2 MPa (20 bar, 290 psi)</td>
</tr>
<tr>
<td>3 mm for UV-900</td>
<td>0.7 µl/3 µl</td>
<td>2 MPa (20 bar, 290 psi)</td>
</tr>
<tr>
<td>10 mm for UV-900</td>
<td>8 µl/13 µl</td>
<td>2 MPa (20 bar, 290 psi)</td>
</tr>
<tr>
<td>0.5 mm for ÅKTA avant</td>
<td>1 µl/10 µl</td>
<td>2 MPa (20 bar, 290 psi)</td>
</tr>
<tr>
<td>2 mm for ÅKTA avant</td>
<td>2 µl/11 µl</td>
<td>2 MPa (20 bar, 290 psi)</td>
</tr>
<tr>
<td>10 mm for ÅKTA avant</td>
<td>8 µl/12 µl</td>
<td>2 MPa (20 bar, 290 psi)</td>
</tr>
</tbody>
</table>

Conductivity flow cells

<table>
<thead>
<tr>
<th>Cell volume</th>
<th>Max pressure</th>
<th>Used with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow cell 24 µl</td>
<td>5 MPa (50 bar, 725 psi)</td>
<td>ÅKTAprime plus, ÅKTAfplc, ÅKTApurifier UPC, ÅKTAxpress</td>
</tr>
<tr>
<td>Flow cell 22 µl</td>
<td>5 MPa (50 bar, 725 psi)</td>
<td>ÅKTA avant</td>
</tr>
<tr>
<td>Flow cell 2 µl</td>
<td>35 MPa (350 bar, 5075 psi)</td>
<td>ÅKTAmicro</td>
</tr>
</tbody>
</table>

pH flow cells

<table>
<thead>
<tr>
<th>Cell volume</th>
<th>Max pressure</th>
<th>Used with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard cell 88 µl</td>
<td>0.5 MPa (5 bar, 73 psi)</td>
<td>ÅKTAprime plus, ÅKTAfplc, ÅKTA purifier UPC, ÅKTApurifier, ÅKTAexplorer</td>
</tr>
<tr>
<td>V9-pH 76 µl</td>
<td>0.5 MPa (5 bar, 73 psi)</td>
<td>ÅKTA avant 25</td>
</tr>
<tr>
<td>V9H-pH 76 µl</td>
<td>0.5 MPa (5 bar, 73 psi)</td>
<td>ÅKTA avant 150</td>
</tr>
<tr>
<td>Flow restrictors</td>
<td>Internal volume</td>
<td>Back pressure from 10 ml/min water at 20°C</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>FR-902</td>
<td>10 µl</td>
<td>0.2 MPa (2 bar, 29 psi)</td>
</tr>
<tr>
<td>FR-904</td>
<td>10 µl</td>
<td>0.4 MPa (4 bar, 58 psi)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air sensors</th>
<th>Internal diameter</th>
<th>Connector to use</th>
<th>Used with ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-912 N³</td>
<td>1.2 mm</td>
<td>Fingertight connector 1/16" M</td>
<td>ÄKTApurifier, ÄKTApurifier UPC, ÄKTApurifier, ÄKTAnecta 100, ÄKTAnecta 100, ÄKTAbio plus</td>
</tr>
<tr>
<td>Air-925 N³</td>
<td>2.5 mm</td>
<td>Tubing connector for o.d. 3/16" with blue ferrule for 3/16" o.d. tubing or Tubing connector for o.d. 1/8" with yellow ferrule</td>
<td>ÄKTApurifier, ÄKTApurifier UPC, ÄKTApurifier, ÄKTAnecta 100, ÄKTAbio plus</td>
</tr>
<tr>
<td>Air-915 N³</td>
<td>1.5 mm</td>
<td>Tubing connector for o.d. 1/8" with yellow ferrule</td>
<td>ÄKTApurifier, ÄKTApurifier UPC, ÄKTApurifier, ÄKTAnecta 100, ÄKTAbio plus</td>
</tr>
<tr>
<td>L9-1.2</td>
<td>1.2 mm</td>
<td>Fingertight connector 1/16" M</td>
<td>ÄKTAvant</td>
</tr>
<tr>
<td>L9-1.5</td>
<td>1.5 mm</td>
<td>Tubing connector for o.d. 3/16" with blue ferrule for 3/16" o.d. tubing or Tubing connector for o.d. 1/8" with yellow ferrule</td>
<td>ÄKTAvant</td>
</tr>
<tr>
<td>Built-in air sensor</td>
<td>1.5 mm</td>
<td>-</td>
<td>ÄKTAvant inlet valves: V9-IA, V9-IB, and V9-IS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valves</th>
<th>Internal volume</th>
<th>Max pressure</th>
<th>Used with ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>FV-923</td>
<td>113 µl</td>
<td>0.2 MPa (2 bar, 29 psi)</td>
<td>ÄKTApurifier, ÄKTApurifier UPC, ÄKTApurifier, ÄKTAnecta 100, ÄKTAvant, and ÄKTAvant</td>
</tr>
<tr>
<td>SV-903</td>
<td>113 µl</td>
<td>0.2 MPa (2 bar, 29 psi)</td>
<td>ÄKTApurifier, ÄKTApurifier, ÄKTAnecta 100, ÄKTAvant, and ÄKTAvant</td>
</tr>
<tr>
<td>Switch valve</td>
<td>113 µl</td>
<td>0.2 MPa (2 bar, 29 psi)</td>
<td>ÄKTAvant</td>
</tr>
<tr>
<td>Injection valve</td>
<td>17 µl</td>
<td>3 MPa (30 bar, 435 psi)</td>
<td>ÄKTAvant</td>
</tr>
<tr>
<td>Loop valve</td>
<td>16 µl</td>
<td>3 MPa (30 bar, 435 psi)</td>
<td>ÄKTAvant</td>
</tr>
<tr>
<td>Column valves</td>
<td>16 µl</td>
<td>3 MPa (30 bar, 435 psi)</td>
<td>ÄKTAvant</td>
</tr>
<tr>
<td>Outlet valve</td>
<td>15 µl</td>
<td>3 MPa (30 bar, 435 psi)</td>
<td>ÄKTAvant</td>
</tr>
<tr>
<td>IV-908</td>
<td>26 µl</td>
<td>2 MPa (20 bar, 290 psi)</td>
<td>ÄKTApurifier, ÄKTAvant, and ÄKTAvant</td>
</tr>
<tr>
<td>PV-908</td>
<td>7 µl</td>
<td>25 MPa (250 bar, 3625 psi)</td>
<td>ÄKTApurifier, ÄKTAvant, and ÄKTAvant</td>
</tr>
<tr>
<td>PV-908H</td>
<td>30 µl</td>
<td>3.5 MPa (35 bar, 508 psi)</td>
<td>High Flow kit for ÄKTApurifier UPC 100, ÄKTApurifier 100, ÄKTAvant 100</td>
</tr>
<tr>
<td>INV-907</td>
<td>9 µl</td>
<td>25 MPa (250 bar, 3625 psi)</td>
<td>ÄKTApurifier, ÄKTAvant, and ÄKTAvant</td>
</tr>
<tr>
<td>INV-907H</td>
<td>41 µl</td>
<td>3.5 MPa (35 bar, 508 psi)</td>
<td>ÄKTApurifier, ÄKTAvant, and ÄKTAvant</td>
</tr>
<tr>
<td>INV-917</td>
<td>1.5 µl</td>
<td>35 MPa (350 bar, 5075 psi)</td>
<td>ÄKTAvant 25</td>
</tr>
<tr>
<td>V9-IA, V9-IB, V9-IS, V9-12, V9-IX</td>
<td>88 µl</td>
<td>1 MPa (10 bar, 145 psi)</td>
<td>ÄKTAvant 25</td>
</tr>
<tr>
<td>Valves</td>
<td>Internal volume</td>
<td>Max pressure</td>
<td>Used with²</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>V9-Inj</td>
<td>9 µl</td>
<td>20 MPa (200 bar, 2900 psi)</td>
<td>ÄKTA avant 25</td>
</tr>
<tr>
<td>V9H-Inj</td>
<td>23 µl</td>
<td>5 MPa (50 bar, 725 psi)</td>
<td>ÄKTA avant 150</td>
</tr>
<tr>
<td>V9-C, V9-C2</td>
<td>110 µl</td>
<td>20 MPa (200 bar, 2900 psi)</td>
<td>ÄKTA avant 25</td>
</tr>
<tr>
<td>V9H-C, V9H-C2</td>
<td>191 µl</td>
<td>5 MPa (50 bar, 725 psi)</td>
<td>ÄKTA avant 150</td>
</tr>
<tr>
<td>V9-pH</td>
<td>15 µl (via bypass)</td>
<td>10 MPa (100 bar, 1450 psi)</td>
<td>ÄKTA avant 25</td>
</tr>
<tr>
<td>V9H-pH</td>
<td>36 µl (via bypass)</td>
<td>2 MPa (20 bar, 290 psi)</td>
<td>ÄKTA avant 150</td>
</tr>
<tr>
<td>V9-O, V9-O2, V9-O3</td>
<td>11 µl</td>
<td>10 MPa (100 bar, 1450 psi)</td>
<td>ÄKTA avant 25</td>
</tr>
<tr>
<td>V9H-O, V9H-O2, V9H-O3</td>
<td>82 µl</td>
<td>2 MPa (20 bar, 290 psi)</td>
<td>ÄKTA avant 150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fraction collectors</th>
<th>Capacity</th>
<th>Other function</th>
<th>Used with²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac-920</td>
<td>95 tubes (o.d. 10–18 mm) or 175 tubes (o.d. 12 mm) or 40 tubes (o.d. 30 mm)</td>
<td>Drop sync</td>
<td>ÄKTA PLC, ÄKTApurifier UPC, ÄKTApurifier, ÄKTAexplorer, or as stand-alone</td>
</tr>
<tr>
<td>Frac-950</td>
<td>4 micro plates (96 wells) and 8 tubes (o.d. 30 mm) or 120 tubes (o.d. 18 mm) and 8 tubes (o.d. 30 mm) or 240 tubes (o.d. 12 mm) or 45 tubes (o.d. 30 mm)</td>
<td>Accumulator Drop sync Optional prep mode Optional micro mode</td>
<td>ÄKTA PLC, ÄKTApurifier UPC, ÄKTApurifier, ÄKTAexplorer, AKTAmicro</td>
</tr>
<tr>
<td>Built-in with ÄKTAxpress</td>
<td>1 deep well plate (96 or 24 wells)</td>
<td></td>
<td>ÄKTAxpress</td>
</tr>
<tr>
<td>Built-in with ÁKTAprime plus</td>
<td>95 tubes (o.d. 10–18 mm) or 175 tubes (o.d. 12 mm) or 40 tubes (o.d. 30 mm)</td>
<td>Drop sync</td>
<td>ÁKTAprime, ÁKTAprime plus</td>
</tr>
<tr>
<td>Built-in with ÁKTA avant</td>
<td>6 cassettes or 55 bottles (50 ml) or 18 bottles (250 ml)</td>
<td>Cooling Accumulator Cassette reader Mix up to 6 cassettes</td>
<td>ÁKTA avant</td>
</tr>
<tr>
<td></td>
<td>6 tubes (50 ml) or 15 tubes (15 ml) or 24 tubes (8 ml) or 40 tubes (3 ml) or 1 deep well plate (24, 48, or 96 wells)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autosamplers</th>
<th>Capacity</th>
<th>Other function</th>
<th>Used with²</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-900</td>
<td>96 standard vials (1.5 ml) or 160 microvials (0.5 ml)</td>
<td>Cooling</td>
<td>ÁKTApurifier, ÁKTAexplorer</td>
</tr>
<tr>
<td>A-905</td>
<td>1 deep or micro plate (96 or 348 wells) or 48 vials (0.5 ml)</td>
<td>Cooling</td>
<td>ÁKTApurifier, ÁKTAexplorer, AKTAmicro</td>
</tr>
</tbody>
</table>

¹ Stroke volume is the amount of liquid that is pushed out from the pump per piston.
² ÁKTAprime plus refers also to ÁKTAprime (except regarding the pump—ÁKTAprime has a P-950 pump); ÁKTApurifier UPC refers to ÁKTApurifier UPC 10, ÁKTApurifier UPC 100; ÁKTApurifier refers to ÁKTApurifier 10, ÁKTApurifier 10 plus, ÁKTApurifier 100, ÁKTApurifier 100 plus; ÁKTAexplorer refers to ÁKTAexplorer 10, ÁKTAexplorer 105, ÁKTAexplorer 100, ÁKTAexplorer 100 Air; ÁKTApurifier refers to ÁKTApurifier Single, ÁKTApurifier Twin, and ÁKTApurifier module; ÁKTA avant refers to ÁKTA avant 25 and ÁKTA avant 150; ÁKTApurifier 10 refers also to ÁKTApurifier 10 plus; ÁKTApurifier 100 refers also to ÁKTApurifier 100 plus; ÁKTAexplorer 10 refers also to ÁKTAexplorer 10S, ÁKTAexplorer 100 refers also to ÁKTAexplorer 100 Air.
³ To connect to ÁKTA PLC, ÁKTApurifier UPC, ÁKTApurifier, and ÁKTAexplorer, use the Air-900 N control box.
Appendix 2
Tubing guide

Many different sizes/types of tubing can be connected to a chromatography system. Tubing with a smaller inner diameter (i.d.) holds less delay volume and will therefore generate less dilution of the protein peak. Narrow tubing, however, increases the system pressure, especially when running at high flow rates. The tubing used should match the application needs.

Tubing material and dimensions

PEEK™

PEEK (polyetheretherketone) is a biocompatible material that is often used for medium- to high-pressure systems. For a color description, see Table A2.1.

ETFE and PTFE

In low- or medium-pressure parts of the system (e.g., inlet and outlet tubing), ETFE (ethylene tetrafluoroethylene) or PTFE (polytetrafluoroethylene) tubing is often used. With these transparent materials, for example, air bubbles can easily be detected. ETFE and PTFE are both biocompatible materials. ETFE is the more rigid of the two.

Steel and titanium

High-pressure systems often use steel or titanium tubing. Steel is prone to corrosion, which often makes it unsuitable for purification of biomolecules.

Table A2.1. Tubing data

<table>
<thead>
<tr>
<th>i.d.</th>
<th>Color of tubing</th>
<th>10 cm tubing corresponds to</th>
<th>100 cm tubing generates</th>
<th>Standard tubing with</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13 mm</td>
<td>Red</td>
<td>1.3 µl</td>
<td>24 MPa</td>
<td>Optional for ÄKTA avant to generate high pressure</td>
</tr>
<tr>
<td>0.15 mm</td>
<td>Purple</td>
<td>1.8 µl</td>
<td>13 MPa</td>
<td>ÄKTAmicro</td>
</tr>
<tr>
<td>0.25 mm</td>
<td>Blue</td>
<td>4.9 µl</td>
<td>1.7 MPa</td>
<td>ÄKTApurifier UPC 10, ÄKTA purifier 10, ÄKTA explorer 10</td>
</tr>
<tr>
<td>0.50 mm</td>
<td>Orange</td>
<td>20 µl</td>
<td>0.11 MPa</td>
<td>ÄKTApurifier UPC 10, ÄKTA purifier 10, ÄKTA explorer 10, ÄKTA avant 25</td>
</tr>
<tr>
<td>0.75 mm</td>
<td>Green</td>
<td>44 µl</td>
<td>0.02 MPa</td>
<td>ÄKTApurifier UPC 100, ÄKTA purifier 100, ÄKTA explorer 100, ÄKTA avant 25</td>
</tr>
<tr>
<td>1.0 mm</td>
<td>Beige</td>
<td>78 µl</td>
<td>0.007 MPa</td>
<td>ÄKTA avant 150</td>
</tr>
<tr>
<td>1.0 mm</td>
<td>Transparent</td>
<td>78 µl</td>
<td>0.007 MPa</td>
<td>ÄKTAxpress</td>
</tr>
<tr>
<td>1.6 mm</td>
<td>Transparent</td>
<td>200 µl</td>
<td>—</td>
<td>Inlet tubing to ÄKTApurifier UPC 10, ÄKTA purifier 10, ÄKTA explorer 10, ÄKTApurifier UPC 10, ÄKTA purifier 10, ÄKTA avant 25</td>
</tr>
<tr>
<td>2.9 mm</td>
<td>Transparent</td>
<td>660 µl</td>
<td>—</td>
<td>Inlet tubing to ÄKTApurifier UPC 100, ÄKTA purifier 100, ÄKTA explorer 100, ÄKTA avant 150</td>
</tr>
</tbody>
</table>

1. For water at 10 ml/min and room temperature
2. Negligible pressure
Internal volume

To calculate the internal volume (V) of specific tubing, use the formula:

\[V = L \times \pi \times d^2/4 \]

- L = length in mm
- d = i.d. in mm

If stating the dimensions in millimeters, the volume will be presented in microliters.

Back pressure

To calculate the back pressure (in MPa) generated over specific tubing, use the following formula, which is based on Hagen-Poiseuille’s work:

\[P = c \times L \times Q \times v/d^4 \]

- \(c = 0.000000679 \)
- L = length in mm
- Q = flow rate in ml/min
- v = viscosity in mPas
- d = i.d. in mm

This formula also applies to the back pressure generated over a column. However, the constant c differs and is dependent on the chromatography medium.

Keep in mind that the viscosity increases with lower temperatures. See Figure 7.7.

1 MPa = 10 bar = 145 psi

Table A2.2. Viscosity values for common solutions at room temperature

<table>
<thead>
<tr>
<th>Solution</th>
<th>Viscosity (in mPas) at 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>0.89</td>
</tr>
<tr>
<td>1 M NaCl</td>
<td>0.97</td>
</tr>
<tr>
<td>1 M NaOH</td>
<td>1.11</td>
</tr>
<tr>
<td>8 M Urea</td>
<td>1.66</td>
</tr>
<tr>
<td>6 M Guanidine hydrochloride</td>
<td>1.61</td>
</tr>
<tr>
<td>20% ethanol</td>
<td>1.87</td>
</tr>
<tr>
<td>50% ethanol</td>
<td>2.41</td>
</tr>
<tr>
<td>100% ethanol</td>
<td>1.07</td>
</tr>
<tr>
<td>50% methanol</td>
<td>1.62</td>
</tr>
<tr>
<td>100% methanol</td>
<td>0.54</td>
</tr>
<tr>
<td>50% isopropanol</td>
<td>2.65</td>
</tr>
<tr>
<td>100% isopropanol</td>
<td>2.04</td>
</tr>
</tbody>
</table>
Appendix 3
Determination of delay volumes

A number of methods exist for determining the delay volume of a system. The easiest and recommended method is to perform a theoretical determination.

Theoretical determination (preferred method)
A theoretical determination is performed in three steps:

1. Identify all components in the system flow path that contribute to the delay volume of interest.
2. Determine the internal volumes of all parts. (See Appendix 1 with respect to hardware components and Appendix 2 with respect to tubing.)
3. To obtain the total delay volume, sum up all the volumes.

Example: Determination of fractionation delay volume, that is, components between the UV/Vis absorbance detector and the fraction collector. In this example, an ÄKTApurifier UPC 10 is used. See Figure A3.1 for system parts.

![Diagram of system parts](image)

The peak is detected by the absorbance detector at time T_0.

The peak reaches the fraction collector at time T_1.

Fig A3.1. Identification of parts of the system used in example.

1. Identify all system parts:
 - *In this example, the following parts were identified: UV/Vis absorbance detector with 2 mm cell, tubing, conductivity cell, tubing, pH cell, tubing, outlet valve, tubing, fraction collector (Frac-950).*

2. Create a table and fill in all the internal volumes of each system component. Measure tubing lengths with a ruler and use Appendices 1 and 2 (or the system manual) to find out all the components’ internal volumes. See Table A3.1 for this example.
Table A3.1. Data for determining delay volume in example

<table>
<thead>
<tr>
<th>System part</th>
<th>Details</th>
<th>Internal volume</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPC-900 UV cell</td>
<td>2 mm cell’s total volume</td>
<td>30 µl/2 = 15 µl*</td>
<td>From Appendix 1</td>
</tr>
<tr>
<td>Blue tubing: UV/Vis absorbance detector → Cond cell</td>
<td>i.d. 0.25 mm, 8 cm</td>
<td>3.9 µl</td>
<td>Formula in Appendix 2</td>
</tr>
<tr>
<td>Cond cell</td>
<td>Standard 14 µl</td>
<td>14 µl</td>
<td>From Appendix 1</td>
</tr>
<tr>
<td>Blue tubing: Cond cell → pH cell</td>
<td>i.d. 0.25 mm, 10 cm</td>
<td>4.9 µl</td>
<td>Formula in Appendix 2</td>
</tr>
<tr>
<td>pH cell</td>
<td></td>
<td>88 µl</td>
<td>From Appendix 1</td>
</tr>
<tr>
<td>Blue tubing: pH cell → Outlet valve</td>
<td>i.d. 0.25 mm, 12 cm</td>
<td>5.9 µl</td>
<td>Formula in Appendix 2</td>
</tr>
<tr>
<td>Outlet valve</td>
<td>PV-908</td>
<td>7 µl</td>
<td>From Appendix 1</td>
</tr>
<tr>
<td>Orange tubing: Outlet valve → Fraction collector</td>
<td>i.d. 0.5 mm, 30 cm</td>
<td>58.9 µl</td>
<td>Formula in Appendix 2 (Accumulator was bypassed.)</td>
</tr>
</tbody>
</table>

Total volume 198 µl

* Use half of the total internal volume of the UV/Vis absorbance cell

3. The total volume is then used to update the delay volume in UNICORN System Control.

If a fraction collector accumulator is used, remember to also include the volume of the tubing to and from the accumulator.

Experimental methods

Experimental determination is also possible. Two methods are described below:

Measuring delay volume using the UV/Vis absorbance detector

To determine the delay volume experimentally, two volumes must be measured. These are V1 and V2.

V1 = volume between injection valve and UV/Vis absorbance detector
V2 = volume between injection valve and fractionation tubing tip

1. Check that the pump is delivering the correct flow rate at 1 ml/min. If not, make sure that the pump has no air bubbles within it (see Chapter 5).
2. Fill a small sample loop (i.e., 100 µl) with a 1% to 5% acetone solution.
3. Fill the system with water. Run the pump at 1 ml/min and inject the acetone solution as a sample. The volume from point of injection to peak appearance in the chromatogram is equal to V1.
4. Reconfigure the system:
 a) To replace the UV/Vis flow cell, disconnect the two tubing segments and connect them with a low-dead-volume connector. Use, for example, a 1/16" female–1/16" female union connector.
 b) Mount the fractionation tubing tip into the top of the UV/Vis flow cell and connect a waste tubing from the bottom of the UV/Vis flow cell.
5. Set the Frac size to a large volume, for example, 100 ml, so that the valve is in the Frac position during the entire run. Start the pump at 1 ml/min and inject acetone solution. The volume from point of injection to peak appearance in the chromatogram is equal to V2.
6. Subtract V1 from V2 to obtain the delay volume.

1 This method cannot be used with AKTA avant because the fractionation tubing cannot be disconnected by the user.
Weighing water
To determine the delay volume experimentally by weighing water, a preweighed container (e.g., a fractionation tube) is needed.

1. Make sure that the system flow path is set up so that the liquid is directed from the UV/Vis flow cell to the fraction collector.
2. Replace the inlet tubing of the UV/Vis flow cell with a Luer adapter.
3. Fill a syringe with at least 5 ml of water and inject it into the flow cell to make sure that the flow path to the fraction collector tubing tip is filled with water.
4. Fill a syringe with at least 20 ml of air (because of compression), and collect the water that is replaced while injecting the air.
5. Determine the delay volume by weighing the water.
6. Repeat at least two times for calculation of a mean value.

1 mg of water is equal to 1 µl (at 4°C; is temperature dependent).
Appendix 4
Troubleshooting column issues

If high system pressure is due to the column, the following procedure (Fig A4.1) can help to resolve the problem.

For information about how to clean the column, see the column’s instruction sheet.

It is not unusual that the system back pressure increases for a short time at the start of the cleaning process.

Fig A4.1. Decision tree for dealing with column issues.
Appendix 5
Troubleshooting fraction collection

Some fraction collector problems and preventive/corrective actions are listed in Table A5.1.

Table A5.1. Potential problems and solutions with fraction collectors

<table>
<thead>
<tr>
<th>General problems</th>
<th>Cause</th>
<th>Preventive/corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractionation marks and actual tube change do not match</td>
<td>Incorrect delay volume entered in the software</td>
<td>Make sure that the correct volume is entered. See Appendix 3 for a description of how to determine the delay volume.</td>
</tr>
<tr>
<td>Spillage between tubes</td>
<td>No synchronization of collection defined in the software</td>
<td>In the software, select drop sync or accumulator as appropriate, or collect in serpentine mode.</td>
</tr>
<tr>
<td></td>
<td>No tubes or filled tubes in fraction collector</td>
<td>Make sure to have the fraction collector filled with empty tubes prior to start.</td>
</tr>
<tr>
<td></td>
<td>Too high flow rate is used</td>
<td>Lower the flow rate.</td>
</tr>
<tr>
<td>Error message “Sensor dirty”</td>
<td>Incorrect positioning of the tubing</td>
<td>Make sure to position the fractionation tubing tip so that it is not blocking the light path for the drop sync.</td>
</tr>
<tr>
<td></td>
<td>Dirty photo cell</td>
<td>Clean the drop sync photo cell; see Chapter 10.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frac-950 problems</th>
<th>Cause</th>
<th>Preventive/corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spillage between tubes</td>
<td>Incorrect selection of tube type and/or rack in the method</td>
<td>Make sure that the same tubes and racks used are selected in the method.</td>
</tr>
<tr>
<td></td>
<td>Incorrect alignment during Frac-950 initialization</td>
<td>Make sure that there is enough free space for the fraction collector movement.</td>
</tr>
<tr>
<td></td>
<td>Incorrect Frac-950 UniNet-1 connection</td>
<td>If the alignment is incorrect (even after a restart), contact Service so the Frac-950 can be recalibrated.</td>
</tr>
<tr>
<td>Error message “Controller Board Error 2012 Frac not Found”</td>
<td>Incorrect Frac-950 UniNet-1 connection</td>
<td>Make sure that the UniNet-1 cable is placed in the correct socket. Consult the user manual for a detailed description.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frac-900/920 problems</th>
<th>Cause</th>
<th>Preventive/corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubes are not fed</td>
<td>Drive sleeve worn out</td>
<td>Change drive sleeve.</td>
</tr>
<tr>
<td>Tube change is not performed properly, e.g., more than one tube is fed per movement</td>
<td>Tube sensor worn out</td>
<td>Change tube sensor.</td>
</tr>
<tr>
<td>Spillage between tubes</td>
<td>Wrong tube center position is used</td>
<td>Switch to the correct tube option on the fractionation arm, allowing the droplets to fall in the center of the tube.</td>
</tr>
<tr>
<td></td>
<td>Fractionation arm not positioned correctly</td>
<td>Make sure that the arm is positioned toward the tube as described in the manual.</td>
</tr>
</tbody>
</table>
General problems continuing

ÄKTA avant fraction collector problems

<table>
<thead>
<tr>
<th>Issue</th>
<th>Cause</th>
<th>Preventive/corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed scanning</td>
<td>There can be a number of reasons for a failed scanning.</td>
<td>Open and close fraction collector to allow system to repeat the scanning. [Inspect cassettes and replace if, for example, identification bars are damaged or blocked. If problem remains, check the troubleshooting section for the fraction collector in the user manual. If problem cannot be solved, contact Service.]</td>
</tr>
<tr>
<td>Liquid appears when frac door is opened</td>
<td>Liquid has entered the frac compartment instead of the waste container.</td>
<td>To avoid waste blockage, make sure that the waste tubing is not bent, curved, or in touch with the bottom of the waste container.</td>
</tr>
</tbody>
</table>

The scanning in the ÄKTA avant fraction collector reads only number and type of racks. If no tubes/plates are present, the system will still run the method, resulting in spoiled samples.
Appendix 6
Introducing laboratory-scale ÄKTA systems

ÄKTA systems are designed for protein purification ranges from micrograms to kilograms of target protein. All systems are controlled by UNICORN software, with the exception of ÄKTAprime plus, which is monitored by PrimeView™ software. UNICORN has the benefits of one common control platform and user interface for all scales of operation in chromatography and filtration. Research-scale ÄKTA systems are briefly described on the following pages, in Figures A6.1 to A6.7. Table A6.1 lists the standard ÄKTA system configurations.

Table A6.1. Ways of working with standard ÄKTA systems

<table>
<thead>
<tr>
<th>Way of working</th>
<th>ÄKTAprime plus</th>
<th>ÄKTApurifier</th>
<th>ÄKTAxpress</th>
<th>ÄKTA avant</th>
<th>ÄKTA micro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory scale</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Process development</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Regulatory demands</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>System control and data handling for regulatory requirements</td>
<td>-</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Type of work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generic methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micropreparative and analysis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Automation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffer preparation function</td>
<td>-</td>
<td>(•)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pH scouting</td>
<td>-</td>
<td>(•)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Media or column scouting</td>
<td>-</td>
<td>(•)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Multistep purification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNICORN</td>
<td>-</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>PrimeView</td>
<td>•</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Recommended
- (•) Optional
- Not recommended or not applicable

Fig A6.1 The standard ÄKTA system configurations.
ÄKTAprime plus is an economical and easy-to-learn system for the purification of proteins (Fig A6.2). With push button control, it offers simple one-step purification of proteins (Fig A6.3). This system includes preprogrammed methods for the purification of affinity-tagged proteins (histidine, GST, Strep-tag™ II, and MBP tags) and antibodies. There are preprogrammed methods for the use of any HiTrap column. The chromatography runs are monitored with PrimeView software. In addition, recovery of the recombinant protein is often better than when the same protein is purified manually. With optimized purification protocols and prepacked columns, yields and purity are highly consistent. Microgram-to gram-scale quantities of tagged proteins can be purified in a single chromatography step on ÄKTAprime plus used in conjunction with the appropriate columns.

Fig A6.3. Typical procedures using ÄKTAprime plus. (A) Prepare the buffers. (B) Connect the column. (C) Prepare the fraction collector. (D) Load the sample and press start.

ÄKTApurifier is designed for versatile FPLC purification of proteins and peptides (Fig A6.4). There are four core ÄKTApurifier systems that can be combined with automation kits into an advanced setup to reduce time-consuming steps, increase productivity, or meet new purification challenges. Besides the core ÄKTApurifier, two additional systems, ÄKTApurifier 10 plus and ÄKTApurifier 100 plus, give further automation possibilities. They are both preassembled with convenient automation kits and geared for media screening and optimization.

For purification of proteins at microgram and milligram scale, choose ÄKTApurifier 10, 10 plus, or UPC 10 systems. Purification of larger, gram-scale quantities of protein is achieved with ÄKTApurifier 100, 100 plus, or UPC 100 systems.
ÄKTAxpress is designed for unattended multistep purification of tagged proteins and antibodies (Fig A6.5). Up to 12 ÄKTAxpress systems can be controlled from one computer, allowing parallel purification of up to 48 different samples. Due to its small footprint, two systems can fit in a cold cabinet.

The purification protocols consist of up to four purification steps. A typical four-step protocol begins with AC followed by desalting, IEX, and GF. In addition, automatic on-column or off-column tag-removal steps can be integrated in the purification protocols. Extended and automated washing procedures enable processing of a larger number of samples with minimal risk of cross-contamination.

ÄKTA avant represents the new generation of ÄKTA systems (Fig A6.6). It incorporates functionality for achieving fast and secure protein purification. ÄKTA avant is available in two versions, with 25 and 150 ml/min pumps. ÄKTA avant 25 is designed for screening of media and method optimization in laboratory-scale purification. ÄKTA avant 150 is designed for scale-up and robustness testing.

ÄKTA avant together with UNICORN 6 contains several features to facilitate and automate protein purification. A Design of Experiments (DoE) software module is integrated in UNICORN 6 for ÄKTA avant. It allows automation of the run scheme for the experimental design and maximizes the amount of information obtained while keeping the number of experiments at a minimum during method development.

BufferPro is an advanced inline buffer preparation function that enables buffer mixing without manual interaction.

The built-in fraction collector provides security by cooling the purified samples and preventing dust from being introduced.

ÄKTA avant has a versatile valve configuration to facilitate the purification and increase reproducibility: up to eight samples can be automatically purified; the delta pressure over the column is monitored; five columns can be connected in parallel; and built-in air sensors prevent air bubbles from being introduced.
ÄKTAmicro is designed for micropreparative liquid chromatography applications and for rapid purity analysis in method development and protein characterization (Fig A6.7).

Microscale purifications can be performed starting with samples containing extremely small amounts of target protein using microbore to analytical-scale columns.

The highest possible sample recovery and stability are obtained when the complete flow path is manufactured from inert and biocompatible materials and assembled to give minimal peak broadening. The pump design gives a flexible flow rate range with low pulsation and a broad pressure range, enabling high- as well as low-pressure separations.
Appendix 7
Principles and standard conditions for different purification techniques

Affinity chromatography (AC)

AC media separate proteins on the basis of a reversible interaction between a protein (or a group of proteins) and a specific ligand attached to a chromatographic matrix. The technique is well-suited for a capture or as an intermediate purification step and can be used whenever a suitable ligand is available for the protein(s) of interest. AC offers high selectivity and usually high capacity. It is frequently used as the first step (capture step) of a two-step purification protocol, followed by a second chromatographic step (polishing step) to remove remaining impurities.

The target protein(s) is/are specifically and reversibly bound by a complementary binding substance (ligand). The sample is applied under conditions that favor specific binding to the ligand. Unbound material is washed away, and bound target protein is recovered by changing conditions to those favoring elution. Elution is performed specifically, using a competitive ligand, or nonspecifically, by changing the pH, ionic strength, or polarity. Samples are concentrated during binding, and the target protein is collected in purified and concentrated form. The key stages in an AC separation are shown in Figure A7.1. AC is also used to remove specific contaminants; for example, Benzamidine Sepharose™ 4 Fast Flow removes serine proteases.

Further information—Handbooks

Strategies for Protein Purification, 28-9833-31
Purifying Challenging Proteins, Principles and Methods, 28-9095-31
Affinity Chromatography, Principles and Methods, 18-1022-29
Antibody Purification, Principles and Methods, 18-1037-46
Ion exchange chromatography (IEX)

IEX media separate proteins based on differences in surface charge, generating high-resolution separations with high sample loading capacity. The separation is based on the reversible interaction between a charged protein and an oppositely charged chromatography medium. Proteins bind as they are loaded onto a column. Conditions are then altered so that bound substances are eluted differentially. Elution is usually performed by increasing salt concentration or changing pH. Changes are made stepwise or with a continuous linear gradient. Most commonly, samples are eluted with salt (NaCl), using a gradient elution (Fig A7.2). Target proteins are concentrated during binding and collected in a purified, concentrated form.

The net surface charge of proteins varies according to the surrounding pH. Typically, when above its isoelectric point (pI) a protein will bind to an anion exchanger (e.g., Q Sepharose); when below its pI a protein will bind to a cation exchanger (e.g., SP Sepharose). However, it should be noted that binding depends on charge and that surface charges may thus be sufficient for binding even on the other side of the pI. Typically IEX is used to bind the target molecule, but it can also be used to bind impurities if required. IEX can be repeated at different pH values to separate several proteins that have distinctly different charge properties, as shown in Figure A7.3.

Fig A7.2. Typical IEX gradient elution. Blue line = absorbance; red line = conductivity (salt concentration).

Fig A7.3. Effect of pH on protein elution patterns. V = volume.
Method development (in priority order)

1. Select optimal ion exchanger using small 1 ml columns as in the HiTrap IEX Selection Kit or HiTrap Capto IEX Selection Kit to save time and sample. If a longer packed bed is required use prepacked HiScreen IEX columns. (HiTrap columns have a 2.5 cm bed height, and HiScreen columns have a 10 cm bed height).

2. Scout for optimal pH to maximize capacity and resolution. Begin 0.5 to 1 pH unit away from the isoelectric point of the target protein if known. This optimization step can be combined with optimizing the ionic strength of the sample and binding buffer.

3. Select the steepest gradient to give acceptable resolution at the selected pH. Usually start with a 10 to 20 column volume linear gradient.

4. Select the highest flow rate that maintains resolution and minimizes separation time. Check recommended flow rates for the specific medium and column.

To reduce separation times and buffer consumption, transfer to a step elution after method optimization as shown in Figure A7.4.

Fig A7.4. Step elution. Blue line = absorbance; red line = conductivity (salt concentration).

Further information—Handbooks

Strategies for Protein Purification, 28-9833-31
Purifying Challenging Proteins, Principles and Methods, 28-9095-31
Ion Exchange Chromatography and Chromatofocusing, Principles and Methods, 11-0004-21

Hydrophobic interaction chromatography (HIC)

HIC media separate proteins with differences in hydrophobicity. The technique is well-suited for the capture or intermediate steps in a purification protocol. Separation is based on the reversible interaction between a protein and the hydrophobic surface of a chromatography medium. This interaction is enhanced by high ionic strength buffer, which makes HIC an excellent “next step” after precipitation with ammonium sulfate or elution in high salt during IEX. Samples in high ionic strength solution (e.g., 1.5 M ammonium sulfate) bind as they are loaded onto a column. Conditions are then altered so that the bound substances are eluted differentially.

Elution is usually performed by decreases in salt concentration (Fig A7.5). Changes are made stepwise or with a continuous decreasing salt gradient. Most commonly, samples are eluted with a decreasing gradient of ammonium sulfate. Target proteins are concentrated during binding and collected in a purified and concentrated form. Other elution procedures include reducing eluent polarity (ethylene glycol gradient up to 50%), adding chaotropic species (urea, guanidine hydrochloride) or detergents, changing pH or temperature.
Method development (in priority order)

1. The hydrophobic behavior of a protein is difficult to predict, and binding conditions must be studied carefully. Use HiTrap HIC Selection Kit or RESOURCE™ HIC Test Kit to select the chromatography medium that gives optimal binding and elution over the required range of salt concentration. For proteins with unknown hydrophobic properties begin with a starting buffer containing, for example, 1 M to 1.5 M ammonium sulfate. Knowledge of the solubility of protein in the binding buffer is important because high concentrations of, for example, ammonium sulfate may precipitate proteins.

2. Select a gradient that gives acceptable resolution. As a starting point, a linear gradient from 0 to 100% B of 10 to 20 columns volumes is recommended.

3. Select the highest flow rate that maintains resolution and minimizes separation time. Check recommended flow rates for the specific medium and column.

4. If samples bind strongly to a medium, separation conditions such as pH, temperature, chaotropic ions, or organic solvents may have caused conformational changes and should be altered. Conformational changes are specific to each protein. Use screening procedures to investigate the effects of these agents. Alternatively, change to a less hydrophobic chromatography medium.

To reduce separation times and buffer consumption, transfer to a step elution after method optimization, as shown in Figure A7.6.
Further information—Handbooks

Strategies for Protein Purification, 28-9833-31
Purifying Challenging Proteins, Principles and Methods, 28-9095-31
Hydrophobic Interaction and Reversed Phase Chromatography, Principles and Methods, 11-0012-69

Gel filtration (GF) or Size exclusion chromatography (SEC)

GF/SEC media separate proteins with differences in molecular size and shape. The technique is well-suited for the final polishing steps in purification when sample volumes have been reduced (sample volume significantly influences speed and resolution in GF). Samples are eluted isocratically (single buffer, no gradient, Fig A7.7). Buffer conditions can be varied to suit the sample type or the requirements for further purification, analysis, or storage, because buffer composition usually does not have major effects on resolution. Proteins are collected in purified form in the chosen buffer.

![Fig A7.7. Typical GF elution.](image)

Further information—Handbooks

Strategies for Protein Purification, 28-9833-31
Purifying Challenging Proteins, Principles and Methods, 28-9095-31
Gel Filtration, Principles and Methods, 18-1022-18
Reversed phase chromatography (RPC)

RPC media separate proteins and peptides with differing hydrophobicity based on their reversible interaction with the hydrophobic surface of a chromatographic medium. Proteins bind as they are loaded onto a column. Conditions are then altered so that the bound substances are eluted differentially. Due to the nature of the reversed phase matrices, binding is usually very strong. Binding may be modulated by the use of organic solvents and other additives (ion pairing agents). Elution is usually performed by increases in organic solvent concentration, most commonly acetonitrile. Samples that are concentrated during the binding and separation process are collected in a purified, concentrated form. The key stages in a separation are shown in Figure A7.8.

Fig A7.8. Typical RPC gradient elution. Blue line = absorbance; red line = % elution buffer.

RPC is often used in the final polishing of oligonucleotides and peptides and is well-suited for analytical separations, such as peptide mapping.

RPC is generally not recommended for protein purification if recovery of activity and return to a correct tertiary structure are required, because many proteins are denatured in the presence of organic solvents. Exceptions exist.

Method development

1. Perform a screening and select chromatography medium from the results.
2. Select optimal gradient to give acceptable resolution. As a starting point, a linear gradient from 0 to 100% B of 10 to 20 columns volumes is recommended.
3. Select highest flow rate that maintains resolution and minimizes separation time.
4. For large-scale purification, transfer to a step elution.
5. Proteins that bind strongly to a chromatography medium are more easily eluted by changing to a less hydrophobic chromatography medium.

Further information—Handbooks

Strategies for Protein Purification Handbook, 28-9833-31
Purifying Challenging Proteins, Principles and Methods, 28-9095-31
Hydrophobic Interaction and Reversed Phase Chromatography, Principles and Methods, 11-0012-69
Appendix 8
Columns for ÄKTA systems

High-quality column packing is essential for a good separation. A poorly packed column gives rise to uneven flow dispersion, peak broadening, and loss of resolution. A wide variety of available columns are described below, covering different principles, matrices, and sizes.

For packing a column, a range of empty columns is available. See Table A8.1 for guidelines on how to combine media and columns.

Prepacked columns
Prepacked columns from GE Healthcare will ensure reproducible results and excellent performance.

For more information refer to the guide “Prepacked chromatography columns for ÄKTA systems” (Code No. 28-9317-78).

RESOURCE columns are prepacked with SOURCE™ 15 media for IEX, HIC, and RPC. RESOURCE columns are made of PEEK (polyetheretherketone), which has high pressure tolerance and high chemical resistance (Fig. A8.1). The RPC media are packed into steel columns. SOURCE media are based on a hydrophilic matrix made from monodispersed, rigid, polystyrene/divinyl benzene. The media demonstrate very high chemical and physical stability. The small particle size allows fast binding and dissociation to facilitate high resolution, and the uniformity and stability of the particles ensure high flow rates at low back pressure. RESOURCE columns cannot be opened and repacked.

Precision columns are designed for micropurification and analysis of proteins and peptides (Fig. A8.2). The columns are used extensively in peptide sequencing and protein structure/function studies. They are excellent for the polishing step of small-scale protein purification procedures and for purity check analysis. The small volume of the columns decreases the total area of the prepacked medium, which minimizes nonspecific binding and dilution effects. The column volumes have been scaled down 10-fold compared with Tricorn™ columns. Precision columns are available for GF and IEX. GF media are: Superdex Peptide, Superdex 75 and 200, and Superose™ 6 and 12. IEX media are: Mono Q™, Mono S™, Mini Q™, and Mini S™. Precision columns require a special Precision column holder for use on ÄKTA systems, and the columns cannot be opened and repacked.
HiTrap columns are convenient and reliable columns (1 or 5 ml) with a bed height of 2.5 cm for fast and easy preparative purifications, either alone or connected in series (Fig A8.3). They are designed for use with a syringe, peristaltic pump, or chromatography system. There are HiTrap columns for a broad range of chromatography media: for AC, immobilized metal affinity chromatography (IMAC), IEX, desalting, and HIC. A range of Sephadex™, Sepharose High Performance, Sepharose XL, Sepharose 4B, and Sepharose Fast Flow columns, as well as Capto ImpRes, Capto, MabSelect™, MabSelect Xtra™, MabSelect SuRe, and MabSelect SuRe LX media. The HiTrap column inlet is molded with 1/16” female threads, and the outlet has 1/16” male threads for direct coupling to ÄKTA systems without the need for extra connectors. HiTrap columns cannot be opened and repacked.

HiScreen columns are part of the process development platform available from GE Healthcare (Fig A8.4). The columns are prepacked with a range of BioProcess™ chromatography media (for AC, IMAC, IEX, and HIC) and designed for parameter screening and method optimization. HiScreen columns have small bed volumes (4.7 ml) thus requiring low sample and buffer volumes. Process fluid velocities can be applied, because the 10 cm bed height gives enough residence time, and the results can then serve as the basis for linear process scale-up. If necessary, two columns can easily be connected in series to give a bed height of 20 cm. The small volume makes HiScreen columns suitable also for laboratory-scale purification. HiScreen columns cannot be opened and repacked.

HiPrep prepacked columns are designed for convenient scale-up purification (Fig A8.5). HiPrep columns are available for GF, desalting, AC, IEX, and HIC in four different sizes, 20 ml, 53 ml, 120 ml, and 320 ml. HiPrep columns for GF are prepacked with Sephacryl™ High Resolution media, in 120 ml and 320 ml sizes. The HiPrep Desalting column has a column volume of 53 ml for convenient desalting/buffer exchange of sample volumes up to 15 ml. IEX and HIC chromatography media are available in 20 ml HiPrep columns. The column inlet and outlet are molded with 1/16” female threads for direct connection to ÄKTA systems. HiPrep columns cannot be opened and repacked.
HiLoad™ columns are prepacked with high-performance Superdex media for convenient and reliable GF (SEC) (Fig A8.6). HiLoad columns are available in 120 ml and 320 ml formats prepacked with Superdex 30 prep grade, Superdex 75 prep grade, and Superdex 200 prep grade to cover a wide range of high-resolution separation of proteins of different molecular weights. The columns have an outer plastic tube that protects the column and provides personal safety in the event of breakage.

Fig A8.6. HiLoad columns.

Tricorn high-performance columns are designed for high-resolution protein purification at laboratory scale, making them an excellent choice for the polishing step in multi-step purification protocols (Fig A8.7). Tricorn columns are available with a range of chromatography media for GF (Superose, Superdex), IEX (Mono Q, Mono S, SOURCE 15Q, and SOURCE 15S), chromatofocusing (Mono P), and HIC (SOURCE 15PHE).

The columns are simple to use, with specially designed fittings for easy connection to ÄKTA systems and other high-performance LC systems. The columns are coated with a protective plastic film that protects the column and provides personal safety in the event of breakage. Tricorn columns are also available empty for packing with a chromatography medium of choice (see below).

Fig A8.7. Tricorn columns.

Empty columns
To obtain a column with high-quality packing and that can resist the pressure caused by the pressure drop across the selected chromatography bed, select the appropriate empty column based on the guidelines given in Table A8.1. During packing, follow the instructions supplied with the chromatography medium and empty column.

Fig A8.8. Tricorn columns.

Tricorn columns are designed for high-performance chromatography media such as MonoBeads, Sepharose High Performance, Superdex, and SOURCE (Fig A8.8). When working with capture media such as Capto, MabSelect, or Sepharose Fast Flow, a Tricorn Coarse Filter Kit is recommended to use for reducing the risk of clogging. Tricorn columns are available with an i.d. of 5 mm with lengths of 20, 50, 100, 150, and 200 mm, and with an i.d. of 10 mm and in lengths of 20, 50, 100, 150, 200, 300, and 600 mm. The maximum pressure is 100 bar for the 5 mm (i. d.) column and 50 bar for the 10 mm (i. d.) column.
XK columns are specified to run most chromatography media including Superdex prep grade and Sepharose High Performance (Fig A8.9). They are jacketed and available as 16, 26, and 50 mm (i.d.) columns (XK16, XK26, and XK50) with lengths from 20 to 100 cm. The maximum pressure is 5 bar for XK 16 and XK 26 columns and 3 bar for XK 50 columns. Prepacked XK columns go under the name HiLoad.

Fig A8.9. XK columns.

HiScale™ columns are designed for preparative laboratory-scale purification and for process development using standard chromatography media (Fig A8.10). HiScale columns are available with i.d. of 16, 26, and 50 mm and lengths of up to 20 or 40 cm. The maximum pressure is 20 bar. The QuickLock mechanism of the adapter shaft facilitates rapid and easy movement of the adapter, simplifying adjustments as well as disassembly and cleaning. Turning the column end caps enables controlled axial compression of the medium bed, which is suitable during packing of rigid media.

Fig A8.10. HiScale columns.
Table A8.1 Empty column and chromatography media guide

Recommended column

<table>
<thead>
<tr>
<th>Loose media</th>
<th>Tricorn</th>
<th>XK</th>
<th>HiScale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel filtration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sephadex</td>
<td>○</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Sepharose</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Sephacryl</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Superdex prep grade</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Superose</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Ion exchange</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capto</td>
<td>●</td>
<td>–</td>
<td>●</td>
</tr>
<tr>
<td>Capto ImpRes</td>
<td>●</td>
<td>–</td>
<td>●</td>
</tr>
<tr>
<td>Sepharose Fast Flow</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Sepharose High Performance</td>
<td>●</td>
<td>●</td>
<td>1, 2</td>
</tr>
<tr>
<td>Sepharose XL</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>SOURCE</td>
<td>●</td>
<td>–</td>
<td>●</td>
</tr>
<tr>
<td>Affinity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capto</td>
<td>●</td>
<td>–</td>
<td>●</td>
</tr>
<tr>
<td>Capto Blue</td>
<td>●</td>
<td>–</td>
<td>●</td>
</tr>
<tr>
<td>Sepharose 6B/4B/CL-4B</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Sepharose Fast Flow</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Sepharose High Performance</td>
<td>●</td>
<td>●</td>
<td>1</td>
</tr>
<tr>
<td>MabSelect/MabSelect Xtra/MabSelect SuRe/MabSelect SuRe LX</td>
<td>●</td>
<td>●</td>
<td>1</td>
</tr>
<tr>
<td>Reversed phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOURCE</td>
<td>●</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hydrophobic interaction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capto</td>
<td>●</td>
<td>–</td>
<td>●</td>
</tr>
<tr>
<td>Capto Phenyl</td>
<td>●</td>
<td>–</td>
<td>●</td>
</tr>
<tr>
<td>Capto Butyl</td>
<td>●</td>
<td>–</td>
<td>●</td>
</tr>
<tr>
<td>Sepharose Fast Flow</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Sepharose High Performance</td>
<td>●</td>
<td>●</td>
<td>1, 2</td>
</tr>
<tr>
<td>SOURCE</td>
<td>●</td>
<td>–</td>
<td>●</td>
</tr>
<tr>
<td>Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÄKTAmicro</td>
<td>●</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ÄKTAprime plus</td>
<td>●</td>
<td>●</td>
<td>–</td>
</tr>
<tr>
<td>ÄKTApurifier 10</td>
<td>●</td>
<td>●</td>
<td>–</td>
</tr>
<tr>
<td>ÄKTApurifier 100</td>
<td>●</td>
<td>●</td>
<td>–</td>
</tr>
<tr>
<td>ÄKTA avant 25</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ÄKTA avant 150</td>
<td>–</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ÄKTAxpress</td>
<td>○<sup>2</sup></td>
<td>○<sup>2</sup></td>
<td>–</td>
</tr>
</tbody>
</table>

- **Recommended combination**
- ○ Can technically be used, but not an optimal combination
- - Not recommended or not applicable
- 1 Not recommended for XK 50
- 2 For optimal performance use prepacked columns where purification parameters are predefined

29-0108-31 AA 83
Related literature

<table>
<thead>
<tr>
<th>Handbooks</th>
<th>Code number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST Gene Fusion System</td>
<td>18-1157-58</td>
</tr>
<tr>
<td>Affinity Chromatography, Principles and Methods</td>
<td>18-1022-29</td>
</tr>
<tr>
<td>Antibody Purification, Principles and Methods</td>
<td>18-1037-46</td>
</tr>
<tr>
<td>Purifying Challenging Proteins</td>
<td>28-9095-31</td>
</tr>
<tr>
<td>Protein Sample Preparation</td>
<td>28-9887-41</td>
</tr>
<tr>
<td>Strategies for Protein Purification</td>
<td>28-9833-31</td>
</tr>
<tr>
<td>Recombinant Protein Purification, Principles and Methods</td>
<td>18-1142-75</td>
</tr>
<tr>
<td>Gel Filtration, Principles and Methods</td>
<td>18-1022-18</td>
</tr>
<tr>
<td>Hydrophobic Interaction and Reversed Phase Chromatography, Principles and Methods</td>
<td>11-0012-69</td>
</tr>
<tr>
<td>Ion Exchange Chromatography and Chromatofocusing, Principles and Methods</td>
<td>11-0004-21</td>
</tr>
<tr>
<td>2-D Electrophoresis</td>
<td>80-6429-60</td>
</tr>
</tbody>
</table>

| Selection guide |
|---|-------------|
| Prepacked chromatography columns for ÄKTA systems | 28-9317-78 |

| User manuals for ÄKTA system |
|---|-------------|
| Refer to www.gelifesciences.com and search for specific system’s user manual within the Literature Documents and Downloads section. |

| CDs |
|---|-------------|
| Column Packing CD—The Movie | 18-1165-33 |

| Data files, interactive selection guides, apps, and application notes |
|---|-------------|
| Refer to www.gelifesciences.com/protein-purification | |
Ordering information

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity/pack size</th>
<th>Code number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEEK tubing i.d.: 0.25 mm, o.d.: 1/16”</td>
<td>2 m</td>
<td>18-1120-95</td>
</tr>
<tr>
<td>ETFE tubing i.d.: 0.25 mm, o.d.: 1/16”</td>
<td>2 m</td>
<td>18-1121-36</td>
</tr>
<tr>
<td>PEEK tubing i.d.: 0.50 mm, o.d.: 1/16”</td>
<td>2 m</td>
<td>18-1113-68</td>
</tr>
<tr>
<td>ETFE tubing i.d.: 0.50 mm, o.d.: 1/16”</td>
<td>2 m</td>
<td>18-1120-96</td>
</tr>
<tr>
<td>PEEK tubing i.d.: 0.75 mm, o.d.: 1/16”</td>
<td>2 m</td>
<td>18-1112-53</td>
</tr>
<tr>
<td>ETFE tubing i.d.: 0.75 mm, o.d.: 1/16”</td>
<td>2 m</td>
<td>18-1119-74</td>
</tr>
<tr>
<td>PEEK tubing i.d.: 1.0 mm, o.d.: 1/16”</td>
<td>2 m</td>
<td>18-1115-83</td>
</tr>
<tr>
<td>ETFE tubing i.d.: 1.0 mm, o.d.: 1/16”</td>
<td>3 m</td>
<td>18-1142-38</td>
</tr>
<tr>
<td>FEP tubing i.d.: 1/16”, o.d.: 1/8”</td>
<td>3 m</td>
<td>18-1121-16</td>
</tr>
<tr>
<td>FEP tubing i.d.: 1/8”, o.d.: 3/16”</td>
<td>3 m</td>
<td>18-1112-47</td>
</tr>
<tr>
<td>Fingertights and tubing connectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fingertight connector 1/16” M - Narrow - Black</td>
<td>10</td>
<td>18-1172-63</td>
</tr>
<tr>
<td>Fingertight connector 1/16” M - Narrow - Red</td>
<td>8</td>
<td>28-4010-81</td>
</tr>
<tr>
<td>Fingertight connector 1/16” M</td>
<td>10</td>
<td>18-1112-55</td>
</tr>
<tr>
<td>Tubing connector for o.d. 1/16”</td>
<td>10</td>
<td>18-1127-07</td>
</tr>
<tr>
<td>Tubing connector for o.d. 1/8”</td>
<td>10</td>
<td>18-1121-17</td>
</tr>
<tr>
<td>Tubing connector for o.d. 3/16”</td>
<td>10</td>
<td>18-1112-49</td>
</tr>
<tr>
<td>M6 connector</td>
<td>10</td>
<td>18-1172-64</td>
</tr>
<tr>
<td>Unions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Union Luer F - M6 F</td>
<td>2</td>
<td>18-1027-12</td>
</tr>
<tr>
<td>Union 1/16” F - 1/16” F</td>
<td>5</td>
<td>11-0003-39</td>
</tr>
<tr>
<td>Union Fingertight i.d. 0.3 mm</td>
<td>4</td>
<td>11-0008-52</td>
</tr>
<tr>
<td>Union 1/16” M - M6 F</td>
<td>8</td>
<td>18-1112-58</td>
</tr>
<tr>
<td>Union 1/16” F - 1/16” F Ti</td>
<td>1</td>
<td>18-3855-01</td>
</tr>
<tr>
<td>Union 1/16” F - M6 M</td>
<td>6</td>
<td>18-1112-57</td>
</tr>
<tr>
<td>Union Luer F - 1/16” M</td>
<td>2</td>
<td>18-1112-51</td>
</tr>
<tr>
<td>Union 1/16” M - 1/16” M - i.d. 0.13 mm</td>
<td>1</td>
<td>18-1120-90</td>
</tr>
<tr>
<td>Union 1/16” M - 1/16” M - i.d. 0.25 mm</td>
<td>2</td>
<td>18-1120-92</td>
</tr>
<tr>
<td>Union 1/16” M - 1/16” M - i.d. 0.5 mm</td>
<td>2</td>
<td>18-1120-93</td>
</tr>
<tr>
<td>Union 5/16” F - M6 M</td>
<td>3</td>
<td>18-1127-76</td>
</tr>
<tr>
<td>Union 5/16” F - 1/16” M</td>
<td>8</td>
<td>18-1142-08</td>
</tr>
<tr>
<td>Union M6 F - 1/16” M</td>
<td>5</td>
<td>18-3858-01</td>
</tr>
<tr>
<td>Union 1/16” M - 1/16” M - i.d. 0.5 mm</td>
<td>5</td>
<td>28-9543-26</td>
</tr>
<tr>
<td>Union M6 F-M6 F SRTC-2</td>
<td>5</td>
<td>19-2143-01</td>
</tr>
<tr>
<td>Ferrules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrules for 1/16” tubing connector - Blue</td>
<td>10</td>
<td>18-1127-06</td>
</tr>
<tr>
<td>Ferrules for 1/8” tubing connector - Yellow</td>
<td>10</td>
<td>18-1121-18</td>
</tr>
<tr>
<td>Ferrules for 3/16” tubing connector - Blue</td>
<td>10</td>
<td>18-1112-48</td>
</tr>
<tr>
<td>Stop plugs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop plug 1/16” Narrow</td>
<td>5</td>
<td>11-0003-55</td>
</tr>
<tr>
<td>Stop plug 5/16” M</td>
<td>5</td>
<td>18-1112-50</td>
</tr>
<tr>
<td>Stop plug 1/16” M</td>
<td>5</td>
<td>18-1112-52</td>
</tr>
<tr>
<td>Description</td>
<td>Quantity/pack size</td>
<td>Code number</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Sample loops</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assorted sample loops, PTFE (25, 50, 100, 200, 500 µl)</td>
<td>1 each</td>
<td>18-0404-01</td>
</tr>
<tr>
<td>Sample loops, PTFE (1 and 2 ml)</td>
<td>1 each</td>
<td>18-5897-01</td>
</tr>
<tr>
<td>Sample loop, PTFE, 10 ml</td>
<td>1</td>
<td>18-1161-24</td>
</tr>
<tr>
<td>Sample loop, PEEK, 1 ml</td>
<td>1</td>
<td>18-1114-01</td>
</tr>
<tr>
<td>Sample loop, PEEK, 10 µl</td>
<td>1</td>
<td>18-1120-39</td>
</tr>
<tr>
<td>Sample loop, PEEK, 100 µl</td>
<td>1</td>
<td>18-1113-98</td>
</tr>
<tr>
<td>Sample loop, PEEK, 500 µl</td>
<td>1</td>
<td>18-1113-99</td>
</tr>
<tr>
<td>Sample loop, PEEK, 2.0 ml</td>
<td>1</td>
<td>18-1114-02</td>
</tr>
<tr>
<td>Sample loop, PEEK, 5.0 ml</td>
<td>1</td>
<td>18-1140-53</td>
</tr>
<tr>
<td>Sample loop for ÄKTAxpress, ETFE, 10.0 ml</td>
<td>1</td>
<td>11-0003-02</td>
</tr>
<tr>
<td>Loop extension kit for ÄKTAxpress, ETFE, 10.0 ml</td>
<td>5</td>
<td>28-9044-38</td>
</tr>
<tr>
<td>Superloop 10 ml, 1/16" fittings</td>
<td>1</td>
<td>18-1113-81</td>
</tr>
<tr>
<td>Superloop 50 ml, 1/16" fittings</td>
<td>1</td>
<td>18-1113-82</td>
</tr>
<tr>
<td>Superloop 150 ml, M6 fittings</td>
<td>1</td>
<td>18-1023-85</td>
</tr>
<tr>
<td>Solvent resistant O-rings to Superloop 10 and 50 ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-ring to movable seal (11.3 x 2.4 mm) KAL</td>
<td>3</td>
<td>18-6300-01</td>
</tr>
<tr>
<td>O-ring to movable seal (11.3 x 2.4 mm) FFPM/FFKM</td>
<td>2</td>
<td>18-1104-97</td>
</tr>
<tr>
<td>Mixers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixer M-925 Mixing chamber 90 µl</td>
<td>1</td>
<td>18-1147-24</td>
</tr>
<tr>
<td>Mixer M-925 Mixing chamber 200 µl</td>
<td>1</td>
<td>18-1147-21</td>
</tr>
<tr>
<td>Mixer M-925 Mixing chamber 0.6 ml</td>
<td>1</td>
<td>18-1118-90</td>
</tr>
<tr>
<td>Mixer M-925 Mixing chamber 2 ml</td>
<td>1</td>
<td>18-1118-91</td>
</tr>
<tr>
<td>Mixer M-925 Mixing chamber 5 ml</td>
<td>1</td>
<td>18-1118-92</td>
</tr>
<tr>
<td>Mixer M-925 Mixing chamber 12 ml</td>
<td>1</td>
<td>18-1118-93</td>
</tr>
<tr>
<td>ÄKTA avant Mixer chamber 0.6 ml</td>
<td>1</td>
<td>28-9561-86</td>
</tr>
<tr>
<td>ÄKTA avant Mixer chamber 1.4 ml</td>
<td>1</td>
<td>28-9562-25</td>
</tr>
<tr>
<td>ÄKTA avant Mixer chamber 5 ml</td>
<td>1</td>
<td>28-9562-46</td>
</tr>
<tr>
<td>ÄKTA avant Mixer chamber 15 ml</td>
<td>1</td>
<td>28-9803-09</td>
</tr>
<tr>
<td>UV/Vis flow cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow cell, 2 mm for UPC-900</td>
<td>1</td>
<td>18-1128-25</td>
</tr>
<tr>
<td>Flow cell, 5 mm for UPC-900</td>
<td>1</td>
<td>18-1128-24</td>
</tr>
<tr>
<td>Flow cell, 2 mm for UV-900</td>
<td>1</td>
<td>18-1111-10</td>
</tr>
<tr>
<td>Flow cell, 3 mm for UV-900</td>
<td>1</td>
<td>18-1147-25</td>
</tr>
<tr>
<td>Flow cell, 10 mm for UV-900</td>
<td>1</td>
<td>18-1111-11</td>
</tr>
<tr>
<td>UV flow cell 0.5 mm for U9</td>
<td>1</td>
<td>28-9793-86</td>
</tr>
<tr>
<td>UV flow cell 2 mm for U9</td>
<td>1</td>
<td>28-9793-80</td>
</tr>
<tr>
<td>UV flow cell 10 mm for U9</td>
<td>1</td>
<td>28-9563-78</td>
</tr>
<tr>
<td>To determine the exact UV/Vis flow cell lengths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV-900 cell 1 mm calibration kit</td>
<td></td>
<td>18-6324-01</td>
</tr>
<tr>
<td>UV-900 and UPC-900 cell 2 mm calibration kit</td>
<td></td>
<td>18-6324-02</td>
</tr>
<tr>
<td>UV-900 cell and UPC-900 5 mm calibration kit</td>
<td></td>
<td>18-6324-04</td>
</tr>
<tr>
<td>UV-900 cell 10 mm calibration kit</td>
<td></td>
<td>18-6324-05</td>
</tr>
<tr>
<td>UV-900 cell calibration XL-file</td>
<td></td>
<td>18-6324-06</td>
</tr>
<tr>
<td>Description</td>
<td>Quantity/pack size</td>
<td>Code number</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>pH detectors for ÄKTA systems excluding ÄKTA avant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH electrode with cell and holder, round tip</td>
<td>1 each</td>
<td>18-1134-84</td>
</tr>
<tr>
<td>pH electrode, round tip</td>
<td>1</td>
<td>18-1111-26</td>
</tr>
<tr>
<td>Dummy electrode, round tip</td>
<td>1</td>
<td>18-1111-03</td>
</tr>
<tr>
<td>Air sensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air-900 N control unit</td>
<td>1</td>
<td>18-1121-22</td>
</tr>
<tr>
<td>Air-912 N flow cell (1.2 mm i.d.)</td>
<td>1</td>
<td>18-1174-15</td>
</tr>
<tr>
<td>Air-925 N flow cell (2.5 mm i.d.)</td>
<td>1</td>
<td>18-1174-16</td>
</tr>
<tr>
<td>Racks and cassettes for ÄKTA avant fraction collector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cassette, holds 6 × 50 ml tubes</td>
<td>2</td>
<td>28-9564-02</td>
</tr>
<tr>
<td>Cassette, holds 15 × 15 ml tubes</td>
<td>2</td>
<td>28-9564-04</td>
</tr>
<tr>
<td>Cassette, holds 40 × 3 ml tubes</td>
<td>2</td>
<td>28-9564-27</td>
</tr>
<tr>
<td>Cassette, holds 1 x 96-, 48-, or 24-deep-well plate</td>
<td>2</td>
<td>28-9542-12</td>
</tr>
<tr>
<td>Rack, holds 55 × 50 ml tubes</td>
<td>1</td>
<td>28-9803-19</td>
</tr>
<tr>
<td>Rack, holds 18 × 250 ml bottles</td>
<td>1</td>
<td>28-9818-73</td>
</tr>
<tr>
<td>Cassette, holds 24 × 8 ml tubes</td>
<td>2</td>
<td>28-9564-25</td>
</tr>
<tr>
<td>Racks and options for Frac-950</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rack A, 18 mm and 30 mm tubes</td>
<td>1</td>
<td>18-6083-11</td>
</tr>
<tr>
<td>Rack B, 12 mm tubes</td>
<td>1</td>
<td>18-6083-12</td>
</tr>
<tr>
<td>Rack C, 4 × 96-well and 30 mm tubes</td>
<td>1</td>
<td>18-6083-13</td>
</tr>
<tr>
<td>Rack D, 30 mm tubes</td>
<td>1</td>
<td>18-6083-14</td>
</tr>
<tr>
<td>Prep mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prep Mode Conversion Kit (for use with Rack E and Rack F)</td>
<td>1</td>
<td>18-6083-18</td>
</tr>
<tr>
<td>Rack E for Prep mode using 30 mm tubes</td>
<td>1</td>
<td>18-6083-15</td>
</tr>
<tr>
<td>Rack F for Prep mode using 250 ml bottles</td>
<td>1</td>
<td>18-6083-16</td>
</tr>
<tr>
<td>Funnel to Flask Kit with funnels, tubing, and tubing organizer (for use with Rack E)</td>
<td>1</td>
<td>18-6083-17</td>
</tr>
<tr>
<td>Microfractionation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microfraction Collection Kit</td>
<td>1</td>
<td>28-9487-80</td>
</tr>
<tr>
<td>Racks for Frac-920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube rack 95 × 10–18 mm, Complete</td>
<td>1</td>
<td>18-3050-03</td>
</tr>
<tr>
<td>Tube rack 175 × 12 mm, Complete</td>
<td>1</td>
<td>19-8684-03</td>
</tr>
<tr>
<td>Tube rack 40 × 30 mm, Complete</td>
<td>1</td>
<td>18-1124-67</td>
</tr>
<tr>
<td>Filter assemblies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inline³ filter (10 and 20 ml/min systems)</td>
<td>1</td>
<td>18-1118-01</td>
</tr>
<tr>
<td>Inline³ filter kit (10 ml/min systems)</td>
<td>2</td>
<td>18-1120-94</td>
</tr>
<tr>
<td>Inline³ filter holder (20, 50, and 100 ml/min systems)</td>
<td>1</td>
<td>18-1112-44</td>
</tr>
<tr>
<td>Inline³ filter kit (20, 50, and 100 ml/min systems)</td>
<td>10</td>
<td>18-1027-11</td>
</tr>
</tbody>
</table>

³ *Inline filter is sometimes also referred to as online filter.*
<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity/pack size</th>
<th>Code number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column holders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKTA avant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column block for 5 columns</td>
<td>1</td>
<td>28-9562-70</td>
</tr>
<tr>
<td>Column holder</td>
<td>1</td>
<td>28-9562-82</td>
</tr>
<tr>
<td>Flexible column holder</td>
<td>1</td>
<td>28-9562-95</td>
</tr>
<tr>
<td>Column clip</td>
<td>5</td>
<td>28-9563-19</td>
</tr>
<tr>
<td>Column holder HiScale 50</td>
<td>1</td>
<td>28-9644-99</td>
</tr>
<tr>
<td>AKTAxpress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large column holder</td>
<td>1</td>
<td>28-4007-37</td>
</tr>
<tr>
<td>Other AKTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column holder, short, plastic</td>
<td>1</td>
<td>18-1113-17</td>
</tr>
<tr>
<td>Column holder XK 50</td>
<td>1</td>
<td>18-3094-60</td>
</tr>
<tr>
<td>Column holder, extra long, metal</td>
<td>1</td>
<td>18-1126-32</td>
</tr>
<tr>
<td>Column clamp, small column</td>
<td>1</td>
<td>18-1149-98</td>
</tr>
<tr>
<td>Clamp for lab rods</td>
<td>1</td>
<td>18-1113-19</td>
</tr>
<tr>
<td>AKTA extension equipment holder</td>
<td>1</td>
<td>18-1158-31</td>
</tr>
<tr>
<td>Autosamplers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autosampler A-900 cooled</td>
<td>1</td>
<td>18-1144-61</td>
</tr>
<tr>
<td>Autosampler A-905</td>
<td>1</td>
<td>18-1175-93</td>
</tr>
<tr>
<td>Autosampler A-905 for ÄKTAmicro</td>
<td>1</td>
<td>18-5050-65</td>
</tr>
<tr>
<td>For external detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD-900 Analog/Digital Converter</td>
<td>1</td>
<td>18-1148-62</td>
</tr>
</tbody>
</table>