(click here to view all of Carolyn Sevier's publications in PubMed)

Siegenthaler, K.D., and Sevier, C.S. 2019. Working together: redox signaling between the endoplasmic reticulum and mitochondria, Chem. Res. Toxic. in press.

Sevier, C.S. 2018. Redox regulation of Hsp70 chaperone function in the endoplasmic reticulum, in
Oxidative Folding of Proteins: Basic Principles, Cellular Regulation and Engineering, Feige M.J. (Ed), Royal Society of Chemistry. (Book Chapter)
Click here for book ordering and book content information.

O’Donnell, J.P., Marsh, H.M., Sondermann, H., and Sevier, C.S. 2018. Disrupted hydrogen bond network and impaired ATPase activity in an Hsc70 cysteine mutant, Biochemistry, 57:1073-1086.

Ellgaard, L., Sevier, C.S., and Bulleid, N.J. 2018. How are proteins reduced in the endoplasmic reticulum? Trends Biochem. Sci., 43:32-43. (Review Article)

Siegenthaler, K.D., Pareja, K.A., Wang, J., and Sevier, C.S. 2017. An unexpected role for the yeast nucleotide exchange factor Sil1 as a reductant acting on the molecular chaperone BiP, eLife, 6:e24141.

Xu, M., Marsh, H.M., and Sevier, C.S. 2016. A conserved cysteine within the ATPase domain of the endoplasmic reticulum chaperone BiP is necessary for a complete complement of BiP activities, J. Mol. Biol., 428:4168-4184.

Wang, J., and Sevier, C.S. 2016. Formation and reversibility of BiP cysteine oxidation facilitate cell survival during and post oxidative stress, J. Biol. Chem., 291:7541-7157.

Wang, J., Pareja, K.A., Kaiser, C.A., and Sevier, C.S. 2014. Redox signaling via the molecular chaperone BiP protects cells against endoplasmic reticulum-derived oxidative stress, eLife, 3:e03496.

Sevier, C.S. 2012. Erv2 and quiescin sulfhydryl oxidases: Erv-domain proteins associated with the secretory pathway, Antioxid. Redox Signal., 16:800-808. (Review Article)

Selected publications from Carolyn’s Post-doctoral and Graduate Studies:

Kim, S., Sideris, D.P., Sevier, C.S., and Kaiser, C.A. 2012. Balanced Ero1 activation and inactivation establishes ER redox homeostasis, J. Cell Biol., 196:713-725.

Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, J.L.Y, Toufighi, K., Mostafavi, S., Prinz, J., St. Onge, R.P., VanderSluis, B., Makhnevych, T., Vizeacoumar, F.J., Alizadeh, S., Bahr, S., Brost, R.L., Chen, Y., Cokol, M., Deshpande, R., Li, Z., Li, Z-Y., Liang, W., Marback, M., Paw, J., San Luis, B-J., Shuteriqi, E., Tong, A.H.Y., van Dyk, N., Wallace, I.M., Whitney, J.A., Weirauch, M.T., Zhong, G., Zhu, H., Houry, W.A., Brudno, M., Ragibizadeh, S., Papp, B., Pál, C., Roth, F.P., Giaever, G.N., Nislow, C., Troyanskaya, O.G., Bussey, H., Bader, G.D., Gingras, A.C., Morris, Q.D., Kim, P.M., Kaiser, C.A., Myers, C.L., Andrews, B.J., and Boone, C. 2010. The genetic landscape of a cell, Science, 327:425-431.

Sevier, C.S., and Kaiser, C.A. 2008. Ero1 and redox homeostasis in the endoplasmic reticulum, BBA - Molecular Cell Research, 1783:549-556. (Review Article)

Sevier, C.S., Qu, H., Heldman, N., Gross, E., Fass, D., and Kaiser, C.A. 2007. Modulation of cellular disulfide bond formation and the ER redox environment by feedback regulation of Ero1, Cell, 129:333-344.

Sevier, C.S., and Kaiser, C.A. 2006. Conservation and diversity of the cellular disulfide bond formation pathways, Antioxid. Redox Signal., 8:797-811. (Review Article)

Sevier, C.S., and Kaiser, C.A. 2006. Disulfide transfer between two conserved cysteine pairs imparts selectivity to protein oxidation by Ero1, Mol. Biol. Cell, 17:2256-2266.

Gross, E., Sevier, C.S., Heldman, N., Vitu, E., Bentzur, M., Kaiser, C.A., Thorpe, C., and Fass D. 2006. Generating disulfides enzymatically: reaction products and electron acceptors for the endoplasmic reticulum thiol oxidase Ero1p, Proc. Natl. Acad. Sci., 103:299-304.

Sevier, C.S., Kadokura, H., Tam, V.C., Beckwith, J., Fass, D., and Kaiser, C.A. 2005. The prokaryotic enzyme DsbB may share key structural features with eukaryotic disulfide bond forming oxidases, Protein Science, 14:1630-1642.

Sevier, C.S., and Kaiser, C.A. 2002. Formation and transfer of disulphide bonds in living cells, Nature Rev. Mol. Cell Biol., 3: 836-847. (Review Article)

Gross, E., Sevier, C.S., Vala, A., Kaiser, C.A., and Fass, D. 2002. A new FAD-binding fold and intersubunit disulfide shuttle in the thiol oxidase Erv2p, Nature Struct. Biol., 9:61-67.

Sevier, C.S., Cuozzo, J.W., Vala, A., Åslund, F., and Kaiser, C.A. 2001. A flavoprotein oxidase defines a new endoplasmic reticulum pathway for biosynthetic disulphide bond formation Nature Cell Biol., 3: 874-882.

Sevier, C.S., Weisz, O.A., Davis, M., and Machamer, C.E. 2000. Efficient export of the vesicular stomatitis virus G protein from the endoplasmic reticulum requires a signal in the cytoplasmic tail that includes both tyrosine-based and di-acidic motifs, Mol. Biol. Cell, 11:13-22.